期刊文献+

基于先验Haar-Like特征的多通道人体检测方法 被引量:3

Multi-channel human detection method based on prior Haar-Like features
下载PDF
导出
摘要 针对聚合通道特征(ACF)在人体检测中对人体轮廓特征描述不够充分的问题,提出基于先验知识的Haar-Like特征来增强检测器对人体轮廓特征的描述能力。设计了一组Haar-Like特征,利用了人体上半身轮廓特点的先验知识,将头部、上半身以及背景视为3个不同的部分。实验结果表明:相比于ACF等算法,所提方法能够提高检测器检测精度,在INRIA数据集上召回率为94. 57%。 Aiming at the problem that the aggregate channel feature(ACF)does not adequately describe human contour features in human detection,a Haar-Like feature based on prior knowledge is used to enhance the ability of the detector to describe human contour features.A set of Haar-Like features is designed.This feature takes advantage of prior knowledge of the human body’s upper body contour characteristics and treats the head,upper body,and background as three different parts.The experimental results show that compared with the ACF and other algorithms,the detection method combined with the Haar-Like feature can improve the detection precision of the detector,and the recall rate is increased to 94.57%on the INRIA data set.
作者 周剑宇 梁栋 唐俊 ZHOU Jianyu;LIANG Dong;TANG Jun(School of Electronics and Information Engineering,Anhui University,Hefei 230601,China)
出处 《传感器与微系统》 CSCD 2019年第9期122-125,共4页 Transducer and Microsystem Technologies
基金 赛尔网络下一代互联网技术创新项目(NGII20170614)
关键词 先验知识 HAAR-LIKE特征 聚合通道特征 目标检测 prior knowledge Haar-Like features aggregation channel feature(ACF) target detection
  • 相关文献

参考文献1

二级参考文献13

  • 1贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 2Stein G P, Mano O, Shshua A. A robust method for computing vehicle ego-motion [ C ]// Proceedings of IEEE Intelligent Vehicles Symposium, Detroit, USA : IEEE ,2000:362-368.
  • 3Broggi A, Bertozzi M, Fascioli A, et al. Shape-based pedestrian detection[ C ]//Proceedings of IEEE Intelligent Vehicles Symposium, Dearborn, USA : IEEE ,2000:215-220.
  • 4Shashua A, Gdalyahu Y, Hayun G. Pedestrian detection for driving assistance systems:Single-frame classification and system level performance [ C ]//Proceedings of IEEE Intelligent Vehicles Symposium, Parma, Italy : IEEE ,2004 : 1-6.
  • 5Liu Xia, Fujimura K. Pedestrian detection using stereo night vision [ J ]. IEEE Transactions on Vehicular Technology, 2004, 53(6) :1657-1665.
  • 6Bertozzi M, Binelli E, Broggi A, et al. Stereo vision-based approaches for pedestrian detection [ C ] // Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA : IEEE ,2005 : 3-16.
  • 7Bertozzi M, Broggi A, Fascioli A, et al. Pedestrian detection for driver assistance using multiresolution infrared vision [ J ]. IEEE Transactions on Vehicular Technology, 2004,53 ( 6 ) : 1666-1678.
  • 8Ran Yang, Zheng Qinfen, Weiss I, et al. Pedestrian classification from moving platforms using cyclic motion pattern [ C ]//Proceedings of International Conference on Image Processing, Genoa, Italy : IEEE ,2005:854-857.
  • 9Broggi A, Fascioli A, Grisleri P, et al. Model-based validation approaches and matching techniques for automotive vision based pedestrian detection[ C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA : IEEE ,2005 : 1-3.
  • 10Leibe B, Seemann E Schiele B. Pedestrian detection in crowded scenes [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA: IEEE, 2005: 878-885.

共引文献19

同被引文献14

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部