摘要
针对采集的电能表内异物晃动产生的声音信号,通过对声学识别流程传统端点检测方法的研究,提出了一种新的电能表内异物声音信号端点检测方法。结合小波包能量特征、短时TEO对数能量和模糊C-均值聚类(FCM),使用提取的小波包能量特征同支持向量机(SVM)完成电能表内异物声音的训练与识别。相较传统的基于阈值的端点检测算法,该端点检测算法处理后的异物检测准确率明显较高,能够更好地检测电能表内异物。
For the sound signal generated by the shaking of foreign objects in the electric energy meter,a new endpoint detection method for foreign matter sound signal in electric meter is proposed by studying on traditional endpoint detection method of acoustic identification process.The method combines wavelet packet energy features,short-time TEO logarithmic energy and fuzzy C-means clustering(FCM),and finally uses the extracted wavelet packet energy features and support vector machine(SVM)to complete the training and recognition of foreign matter in the electric energy meter.Compared with the traditional threshold-based endpoint detection algorithm,the endpoint detection algorithm has higher accuracy of detecting on foreign objects,and can better detect foreign objects in the energy meter.
作者
李洋
杨涛
LI Yang;YANG Tao(School of Information Engineering,Southwest University of Science and Technology,Mianyang621000,China;Key Laboratory of Robot Technology for Special Environment of Sichuan Province,Mianyang621000,China)
出处
《传感器与微系统》
CSCD
2019年第9期134-136,140,共4页
Transducer and Microsystem Technologies
基金
国家自然科学基金资助项目(61571376)
特殊环境机器人技术四川省重点实验室开放资助项目(13ZXTK06)