期刊文献+

基于卡尔曼滤波重建的GPS点位修正 被引量:4

GPS point correction based on Kalman filter reconstruction
下载PDF
导出
摘要 由于单点定位的结果受卫星星历误差、卫星钟误差以及卫星信号传播过程中大气延迟误差的影响较为显著,因此解算出的定位结果在真值附近上下浮动。文中采用ARMA模型建立卡尔曼滤波的观测方程和状态方程,并对定位结果进行滤波;采用一次滤波后的坐标值作为初值,建立ARMA模型并二次滤波。实验表明,滤波有效防止了定位结果偏差过大情况的发生,使滤波收敛值与准确值最大偏差不超过3cm,表明采用一次滤波后的坐标值建立的模型更为合理,从而为单点定位结果的时间序列模型的建立提供一种新方法。 The single point positioning results are affected markedly by the satellite ephemeris error,the satellite clock error and the atmospheric delay error.So the calculated positioning results fluctuate around the truth value.ARMA model is used to establish the Kalman filter observation equation and state equation,and filtere the positioning results.The coordinate values are used as the first time filtering which is regard as initial value to establish ARMA model and carry out second time filtering.The experiments show that it can effectively prevent the big deviation of positioning results and the maximum deviation between filtering convergence value and accurate value is less than 3cm.It shows that the model established by first time filtering coordinate value is more reasonable.So a new method for the establishment of single point positioning time-series model is provided.
出处 《测绘工程》 CSCD 2014年第10期1-3,共3页 Engineering of Surveying and Mapping
基金 现代城市测绘国家测绘地理信息局重点实验室开放课题资助项目(20111203W)
关键词 单点定位 时间序列 卡尔曼滤波 ARMA模型 single point positioning time-series Kalman filter ARMA model
  • 相关文献

参考文献6

二级参考文献38

共引文献89

同被引文献24

  • 1HRISTOPULOS D T, MERTIKAS S P, ARHON- TAKIS I, et al. Using GPS for monitoring tall-building response to wind loading: filtering of abrupt changes and low-frequency noise, variography and spectral anal- ysis of displacements[J]. GPS Solutions, 2007, 11 (2) : 85-95.
  • 2LI Xiaojing, GE Linlin, AMBIKAIRAJAH E, et al. Full-Scale structural monitoring using an integrated GPS and accelerometer system[J]. GPS Solutions, 2006,10(4) : 233-247.
  • 3GUO J, XU L, DAI L, et al. Application of the real- time kinematic Global Positioning System in bridge safety monitoring[J]. Journal of Bridge Engineering, 2005,10(2) ,163-168.
  • 4HUANG N E,SHEN Z,LONG S R,et al. The empiri- cal mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998,454(1971) :903-995.
  • 5FLANDRIN G. Rilling and P. Gon. calves. Empirical Mode Decomposition as a filter bank[J], IEEE Sig. Proc. Lett,2004,11(2) :112-114.
  • 6Mohammad Hossein Refan, Hamid Palangi. Positioning Er- ror Reduction of a Low - Cost GPS Receiver for Kinematical Applications [ J]. Arabian Journal for Science and Engi- neering,2012,37(8) :2 221 -2 230.
  • 7CharlesK.Chui,GuanrongChen.卡尔曼滤波及其实时应用(第4版)[M].北京:清华大学出版社,2013.
  • 8施闯,赵齐乐,楼益栋,李敏,耿江辉,葛茂荣,刘经南.卫星导航系统综合分析处理软件PANDA及研究进展[J].航天器工程,2009,18(4):64-70. 被引量:32
  • 9何亮云.高精度GPS测量中多路径误差的研究[J].测绘工程,2010,19(1):35-38. 被引量:12
  • 10段举举,沈云中.基于方差分量估计的GPS/GLONASS组合点定位[J].测绘通报,2011(4):4-6. 被引量:38

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部