期刊文献+

面向地面点识别的机载LiDAR点云分割方法研究 被引量:15

An airborne LiDAR point cloud segmentation method for recognizing the ground measurments
下载PDF
导出
摘要 提出一种面向地面目标识别的机载LiDAR点云分割方法。方法首先求每个激光脚点的法向量和残差,由此确定种子点和种子平面;然后对种子点进行区域生长,生长的过程中以邻接点到种子平面的距离和邻接点与种子点的法向量角度差作为相似性的度量标准;当全部的扫描点都被划分,则算法终止。实验表明,文中提出的分割方法,对于城区区域和农村区域的地面目标有很好的识别效果。 A region-growing-based airborne LiDAR point cloud segmentation method is proposed to extract the ground measurements in the point clouds.Particularly,the normal and residual for each point is estimated by fitting aplane to some neighboring points,and the seed points and seed planes are determined by the above two features.The region growing process is performed from the seed points,where the distance between the neighbors to the current seed plane and the angle difference between the normal of the current seed and its neighbors are the two criterion for judging the similarity.The experiments show that the proposed method is capable of better recognizing the ground measurements for both the urban regions and the natural regions.
出处 《测绘工程》 CSCD 2014年第10期18-22,共5页 Engineering of Surveying and Mapping
关键词 机载LIDAR 点云分割 特征值 法向量 面向对象点云分析 airborne LiDAR point cloud segmentation eigenvalue normal object-based point cloud analysis
  • 相关文献

参考文献3

  • 1Dong Chen,Liqiang Zhang,Jonathan Li,Rei Liu.Urban building roof segmentation from airborne lidar point clouds[J].International Journal of Remote Sensing.2012(20)
  • 2刘进,武仲科,周明全.点云模型分割及应用技术综述[J].计算机科学,2011,38(4):21-24. 被引量:10
  • 3Sunil Arya,David M. Mount,Nathan S. Netanyahu,Ruth Silverman,Angela Y. Wu.An optimal algorithm for approximate nearest neighbor searching fixed dimensions[J].Journal of the ACM (JACM).1998(6)

二级参考文献34

  • 1Sithole G, Vosselman G. Automatic Structure Detection in a Point Cloud of an Urban Landscape [C]//Proceedings of 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fu sion over Urban Areas. 2003: 67-71.
  • 2Khalifa I, Moussa M, Kamel M. Range image segmentation using local approximation of scan lines with application to CAD model acquisition[J]. Machine Vision Applications, 2003,13 :263-274.
  • 3Roggero,Marco. Airborne laser scanning: clustering in raw data [C] // International Archives of Photogrammetry, Remote Sen sing. 2001,34 : 227-232.
  • 4Filin S. Surface clustering from airborne laser scanning data[C]// International Archives of Photogrammetry,Remote Sensing and Spatial Information Sciences. 2002,34 : 117-124.
  • 5Dorninger P, Nothegger C. 3 D Segmentation of unstructured point clouds for building modelling[C]//Stilla U, et al. eds. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences.
  • 6Biosca J M, Lerma J L. Unsupervised robust planar segmentation of terrestrial laser scanner point clouds based on fuzzy clustering methods[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2008,63 : 84-98.
  • 7Chehata,David N, Nicolas, et al. LIDAR data classification using hierarchical K-means clustering[C]//ISPRS Congress. Beijing, 2008,37 : 325-330.
  • 8Sampath A, Shah Jie. Building Roof Segmentation and Recon- struction from Lidar Point Clouds Using Clustering Techniques [C]//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII, 2008, Part B3a.
  • 9Kim T-J, Muller J-P. Development of a graph based approach forbuilding detection[J]. Image and Vision Computing, 1999,17 :3- 14.
  • 10Fuchs F. Building reconstruction in urban environment : a graphbased approach,automatic extraction of man-made objects from aerial and space images(Ⅲ)[M] // Baltsavias E P, Gruen A, Gool L V,eds. Taylor & Francis,2001:205-215.

共引文献10

同被引文献94

引证文献15

二级引证文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部