期刊文献+

基于探测球的固定式扫描海量点云自动定向方法 被引量:1

An auto registration method for fixed type of scanned HPC based on detecting balls
下载PDF
导出
摘要 地面固定式扫描点云首先要将自由坐标系的点云纳入国家坐标系,而单站扫描的点云数据量极大,无法在可视环境下进行拼接。针对现有方法对海量点云拼接的不足,提出一种基于探测球的固定式扫描海量点云自动定向方法,该方法通过数据关联技术读取海量点云、建立标靶搜索环、球拟合确定标靶候选点、全组合距离匹配法确定同名点及坐标转换参数解算等,完成点云的自动定向过程。通过实验验证文中算法的有效性及可行性。 The point cloud data of fixed terrestrial scanning are used for topographic mapping ,of which the data should be transformed from free coordinate system into national coordinate frame .However ,due to the huge quantity of point cloud for single‐station scanning ,the data can not be registered in a visual environment .For the deficiency of existing registration methods for huge point clouds (HPC ) ,an auto method for fixed type of scanned HPC based on detecting balls is put forward .The automatic registration process is implemented by reading point clouds through data association ,searching target‐searching loops , followed by fitting spheres for candidate targets ,extracting corresponding points using distance matching , and calculating the transformation parameters .Experiments demonstrate the effectivity and feasibility of the proposed algorithm .
作者 郭敬平
出处 《测绘工程》 CSCD 2015年第10期11-14,共4页 Engineering of Surveying and Mapping
关键词 海量点云 定向标靶 点云绝对定向 扇形等距离索引 全组合距离匹配 huge point cloud orientation target absolute orientation for point cloud concentric equidistant index distant matching of full combination
  • 相关文献

参考文献11

  • 1Carlos Torre-Ferrero,José Llata,Luciano Alonso,Sandra Robla,Esther Sarabia.3D point cloud registration based on a purpose-designed similarity measure[J]. EURASIP Journal on Advances in Signal Processing . 2012 (1)
  • 2Jian Yao,Mauro Ruggeri,Pierluigi Taddei,Vítor Sequeira.Robust surface registration using N-points approximate congruent sets[J]. EURASIP Journal on Advances in Signal Processing . 2011 (1)
  • 3Area-wide roof plane segmentation in airborne LiDAR point clouds[J]. Computers, Environment and Urban Systems . 2011 (1)
  • 4Ma Hongchao,Zongyue Wang.Distributed data organization and parallel data retrieval methods for huge laser scanner point clouds[J]. Computers and Geosciences . 2010 (2)
  • 5Anthony de Mello,小狐.输了两美元[J].疯狂英语(初中天地),2010(11):32-32. 被引量:2
  • 6Michael Wand,Alexander Berner,Martin Bokeloh,Philipp Jenke,Arno Fleck,Mark Hoffmann,Benjamin Maier,Dirk Staneker,Andreas Schilling,Hans-Peter Seidel.Processing and interactive editing of huge point clouds from 3D scanners[J]. Computers & Graphics . 2008 (2)
  • 7Jagan Sankaranarayanan,Hanan Samet,Amitabh Varshney.A fast all nearest neighbor algorithm for applications involving large point-clouds[J]. Computers & Graphics . 2006 (2)
  • 8N. Li,P. Cheng,M. A. Sutton,S. R. McNeill.Three-dimensional point cloud registration by matching surface features with relaxation labeling method[J]. Experimental Mechanics . 2005 (1)
  • 9van de Giessen Martijn,Vos Frans M,Grimbergen Cornelis A,van Vliet Lucas J,Streekstra Geert J.An efficient and robust algorithm for parallel groupwise registration of bone surfaces. Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention . 2013
  • 10JEO.3D Mapping and Localization Using Leveled Map Accelerated ICP. European Robotics Symposium 2008 . 2008

共引文献1

同被引文献6

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部