期刊文献+

基于平面基准深度图像建模的研究 被引量:1

下载PDF
导出
摘要 散乱数据的TIN模型构建,存在数据量大、构网复杂、存储不便、内存消耗大等缺点。本文提出一种快速判断点在不规则多边形区域内的方法和快速提取点云边界的方法,继而提出一种基于平面基准的深度图像建模方法。该方法能够实现有效的快速构网、减少数据存储量、几何纹理清晰、纹理贴图方便、可进行多分辨率LOD(level of detail)表达等优点。
出处 《测绘通报》 CSCD 北大核心 2014年第S2期151-154,163,共5页 Bulletin of Surveying and Mapping
基金 国家测绘地理信息局科技计划(2013CH-15) 973计划(2012CB725301) 国家自然科学基金(41301429)
  • 相关文献

参考文献8

  • 1张剑清,李彩林,郭宝云,无.基于切平面投影的散乱数据点快速曲面重建算法[J].武汉大学学报(信息科学版),2011,36(7):757-762. 被引量:15
  • 2David Cohen-Steiner,Frank Da.A greedy Delaunay-based surface reconstruction algorithm[J].The Visual Computer.2004(1)
  • 3Nina Amenta,Sunghee Choi,Ravi Krishna Kolluri.The power crust, unions of balls, and the medial axis transform[J].Computational Geometry: Theory and Applications.2001(2)
  • 4N. Amenta,M. Bern.Surface Reconstruction by Voronoi Filtering[J].Discrete & Computational Geometry.1999(4)
  • 5Dey, Tamal K.,Goswami, Samrat.Tight Cocone: A Water-tight Surface Reconstructor[].Journal of Computing and Information Science in Engineering.2003
  • 6Jarvis R A.Computing the Shape Hull of Points inthe Plane[].IEEE Computer Society ConferencePattern Recognition and Image Processing.1977
  • 7Akkiraju N,Edelsbrunner H,Facello M.Alpha shapes:Definitionand software[].Proc Internat Comput Geom Software Workshop.1995
  • 8Graham R L.An efficient algorithm for determining the convex hull of a finite planar set[].Information Processing Letters.1972

二级参考文献17

  • 1董洪伟.求k邻域的体素栅格算法研究[J].计算机工程与应用,2007,43(21):52-56. 被引量:4
  • 2Gopi M, Krishnan S, Silva C T. Surface Recon- struction Based on Lower Dimensional Localized Delaunay Triangulation[J]. Computer Graphics Fo- rum, 2000, 19(3):467-478.
  • 3Mount D M, Arya S. ANN: A Library for Approx- imate Nearest Neighbor Searching [OL]. http:// www. cs. u. rod. edu/mount/AN N/,2001.
  • 4Bentley J L. K-d Trees for Semidynamie Point Sets[C]. The 6th Annual ACM Symposium on Compu-tational Geometry, San Francisco, 1990.
  • 5Cormen T H, Leiserson C E, Rivest R L, et al. In- troduction to Algorithms, Second Edition[M]. New York: MIT Press,2001 : 482-484.
  • 6Hoppe H, Derose T, Duchamp T, et al. Surface Reconstruction from Unorganized Points[C]. Pro- ceedings of ACM Siggraph, Chicago, 1992, 71-78.
  • 7Hoppe H, Derose T, Duchamp T, et al. Mesh Op- timization[C]. Siggraph'93, Anaheim, CA, 1993.
  • 8Foley T A, Hagen H, Nielson G M. Visualizing and Modeling Unstructured Data[J]. The Visual Computer International Journal of Computer Graph- ics 1993, 9(8): 439-449.
  • 9Kazhdan M, Bolitho M, Hoppe H. Poisson Surface Reconstruction [ C ]. Eurographics Symposium on Geometry Processing, Cagliari, Sardinia, Italy, 20O6.
  • 10Amenta N, Bern M. Surface Reconstruction by Voronoi Filtering [J] Discrete Comput Geom, 1999, 2(4): 481-504.

共引文献14

同被引文献21

  • 1刘元朋,张定华.逆向工程中圆柱体几何特征参数评估方法的研究[J].机械科学与技术,2005,24(3):310-311. 被引量:19
  • 2AMENTA N, BERN M.Surface Reconstruction by Voronoi Filtering [ J ]. Discrete ComputGeom, 1999,2 (4) : 481- 504.
  • 3AMENTA N,CHOI S,KOLLURI R.The Power Crust, Unions of Balls, and the Medial Axis Transform [ J ]. Comput- Geom: TheoryApplication, 2001,19 : 127-153.
  • 4DEY T K,GOSWAM! S. Tight Cocone:A Watertight Sur- face Reconstructor[J]. Journal of Computing and Infor- mation Science in Engineering, 2003, 3(4) : 302- 307.
  • 5COHEN-STEINER D,DA F.A Greedy Delaunay Based Sur- face Reconstruction Algorithm [J]. The Visual Comput- er,2004,20( 1 ) :4-16.
  • 6BOLLES R C, FISCHLER M A. A RANSAC-based Ap- proach to Model Fitting and Its Application to Finding Cylinders in Range Data [ C ] //In Proceedings of the Seventh Int. Vancouver: [ s.n.] , 1981.
  • 7ROTH G, LEVINE M D. Geometric Primitive Extraction Using a Genetic Algorithm [ J ]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1994, 16(9) : 901-905.
  • 8CHAPERON T, GOULETIE F. Etracting Cylinders in Full 3D Data Using a Random Sampling Method and the Gaussian Image [ C ]//Vision, Modeling and Visualiza- tion. Stuttgart : [ s.n.] ,2001.
  • 9LUKACS G, MARTIN R, MARSHALL D.Faithful Least- squares Fitting of Spheres, Cylinders, Cones and Tori for Reliable Segmentation[J]. Lecture Notes in Computer Science, 1998,1406:671-686.
  • 10MARSHALL D, LUKACS G, MARTIN R. Robust Seg- mentation of Primitives from Range Data in the Presence of Geometric Degeneracy[ J]. Pattern Analysis and Ma- chine Intelligence, IEEE Transactions on, 2001, 23 (3) : 304-314.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部