期刊文献+

面向城市规划决策的地理国情数据挖掘——以北京市城市规模模拟为例 被引量:5

Mining National Geographic Census for Urban Planning Implications:A Case Geo-Simulation of Urban Size in Beijing
下载PDF
导出
摘要 随着地理国情普查和监测的推进,信息量激增,数据挖掘方法和社会化应用工具不断进步,为解决规划决策中的资源分配率低、不确定性高等问题提供了得天独厚的优势。在北京市疏解非首都功能、推进京津冀地区协同发展的大背景下,以地理国情监测数据为基础,以复杂地理计算思想为指导,提出了一种基于集成学习的自适应元胞自动机模拟模型并应用于北京市城市规模演变的模拟。通过对比2015年北京市的预测结果与真实数据发现,相较于传统基于经验统计模型的元胞自动机模型,本文提出的模型预测精度更高。最后本文以2007年和2015年的北京市地理国情监测数据为模拟和训练数据,在假定当前社会经济发展速度不变的情况下,对2023年北京市城市规模作出预测,并找到北京市城市规模的演变规律,识别未来潜在的城市扩展热点区域,最终为城市规划的决策者提供"疏解"北京市的数据支持和现实路径。 With the development of the census and monitoring of geographical conditions,information content increases sharply.Progress of data mining methods and social application tools provides a unique advantage for solving the problem of low resource allocation rate and high uncertainty in planning decision-making.Against the background that Beijing municipalpolicy to easynon-capital function and promote synergetic development of Beijing-Tianjin-Hebei region,based on geographical conditions monitoring data,we proposed a new self-adaptive cellular automaton based on ensemble learning( EL-CA) model guided by complex geocomputing to the simulation ofcity scale evolvement in Beijing. Com-parison of prediction and real data in Beijing in 2015 proves that prediction of EL-CA model significantly out performs those of the traditional CA models based on empirical statistics. Finally we employed geographical conditions monitoring data of Beijing in 2007 and 2015 as training data,under the assumption that socioeconomic development remains unchanged,making predictions of city scalein 2023,trying to discover the rule of evolvement,identify potential hotspots of urban sprawl in the future and finally provide data supporting and practical path to in policy-making of"easing"Beijing.
出处 《测绘通报》 CSCD 北大核心 2017年第S2期141-145,共5页 Bulletin of Surveying and Mapping
关键词 地理国情监测 数据挖掘 元胞自动机 机器学习 集成学习 National Geographic Conditions Monitoring data mining cellular automaton machine learning ensemble learning
  • 相关文献

参考文献5

二级参考文献57

  • 1李德仁,邵振峰,朱欣焰.论空间信息多级格网及其典型应用[J].武汉大学学报(信息科学版),2004,29(11):945-950. 被引量:61
  • 2王琦,过仲阳,吴健平,顾星晔.基于GIS的上海市河道变化监测信息系统设计研究[J].上海地质,2006(3):35-39. 被引量:1
  • 3孙雅荣,芮建勋,陈能.基于OLE海量空间数据管理系统的设计[J].上海地质,2006(3):40-42. 被引量:2
  • 4Sui Haigang, Zhou Qiming, Gong Jianya, et al. Processing of Multitemporal Data and Change De-tection[M]. Advances in Photogrammetry, Remote Sensing and Spatial Information Sciences. London: Taylor Francis, 2008:227-257.
  • 5技术预见报告编委会.中国科学院科学与技术预见系列报告之二[M].北京:科学出版社,2008:427-434.
  • 6中国测绘学会.测绘科学与技术学科发展报告[M].北京:中国科学技术出版社,2010.
  • 7C1arke K C,Hoppen S,Gaydos L A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area.Enviromnent and Plannmg B:Plarming and Design,1997,24:247-261.
  • 8Hagerstrand T.A Monte-Carlo approacbto diffusion.European Joumal ofSociology,1965,VI:43-67.
  • 9Clarke K C,Gaydos L J.Loose-coupling a ceilular automata model and GIS:long-term urban growth predictionfor San Francisco and Washington/Baltimore.International Joumal of Geographical Information Science,1998,12(7):699-714.
  • 10Openshaw S.Neural network,genetic,andfuzzy logic models of spatial interaction.Environment and Planning A,1998,30:1857-1872.

共引文献460

同被引文献87

引证文献5

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部