期刊文献+

一种基于智能手机的室内融合定位方法 被引量:6

A method of indoor fusion positioning based on smartphone
下载PDF
导出
摘要 随着室内无线终端与智能手机的快速发展,室内定位技术成为近几年的研究热点之一。本文研究了基于低功耗蓝牙(BLE)和行人航位推算(PDR)技术,利用扩展卡尔曼滤波(EKF)进行融合处理的室内定位方法。该方法包含3部分:①离线阶段利用蓝牙指纹快速采集方法建立指纹库,在线阶段利用加权K邻近算法进行指纹定位;②利用手机内置传感器准确估计航向角,并结合步态识别算法和步长估计算法推算行人位置;③利用EKF对两种定位结果进行融合,获取最优位置估计。试验结果表明,融合定位方法的平均定位精度为1.17 m,90%的概率定位精度达到2 m。 With the rapid development of indoor wireless terminals and smart phones,indoor positioning technology has become one of the research hotspots in recent years.A novel indoor positioning method by fusing bluetooth low energy(BLE)and pedestrian dead reckoning(PDR)with extended kalman filter(EKF)is discussed.It includes the following three parts:①establish the BLE fingerprint library using fingerprint fast acquisition method in the offline phase and compute the location using weighted K-nearest neighbor fingerprint positioning method in the online phase;②estimate the heading angle by fusing the sensors in the mobile phone and calculate pedestrian position conbined with gait recognition algorithm and step-length estimation algorithm;③fuse the two positioning results above with EKF to obtain the optimal position estimation.The experiment result shows that the average positioning error is down to 1.17 m and the positioning accuracy reaches 2 m with 90%probability.
作者 冯昆 何涛 汪云甲 FENG Kun;HE Tao;WANG Yunjia(Tianjin Institute of Surveying and Mapping,Tianjin 300381,China;China University of Mining and Technology,Xuzhou 221116,China)
出处 《测绘通报》 CSCD 北大核心 2019年第S2期6-10,37,共6页 Bulletin of Surveying and Mapping
关键词 室内定位 低功耗蓝牙 指纹定位 行人航位推算 扩展卡尔曼滤波 indoor positioning bluetooth low energy fingerprint localization pedestrian dead reckoning extended kalman filter
  • 相关文献

参考文献5

二级参考文献31

  • 1陈维克,李文锋,首珩,袁兵.基于RSSI的无线传感器网络加权质心定位算法[J].武汉理工大学学报(交通科学与工程版),2006,30(2):265-268. 被引量:207
  • 2高为广,杨元喜,崔先强,张双成.IMU/GPS组合导航系统自适应Kalman滤波算法[J].武汉大学学报(信息科学版),2006,31(5):466-469. 被引量:40
  • 3杨元喜,高为广.两种渐消滤波与自适应抗差滤波的综合比较分析[J].武汉大学学报(信息科学版),2006,31(11):980-982. 被引量:31
  • 4王晖.基于RSSI的无线传感器网络室内定位算法设计与实现[D].北京:北京邮电大学,2010.
  • 5IGLESIAS P,CORUNA H J A,et al. Indoor person local- ization system through RSSI Bluetooth fingerprinting[C].IW- SSIP, Vienna Austria.2012:40-43.
  • 6Pei Ling, Chen Ruizhi, Liu Jingbin, et al. Using inquiry- based bluetooth RSSI probability distributions for Indoor po- sitioning[J]. Journal of Global Positioning Systems, 2010,8 (4):1-25.
  • 7谢献忠,易伟建,王修勇,禹见达.基于虚拟响应信号的结构参数时域辨识研究[J].计算力学学报,2007,24(6):859-864. 被引量:5
  • 8TIAN .Z, ZHANG Y, ZHOU M, et al. Pedestrian dead reckoning for MARG navigation using a smartphone [J]. EURASIP Journal on Advances in Signal Processing, 2014, 2014(1): 1-9.
  • 9QIAN J, MA J, YING R, et al. An improved indoor lo- calization method using smartphone inertial sensors[C]. Indoor Positioning and Indoor Navigation (IPIN), 2013 Internation- al Conference on. IEEE, 2013: 1-7.
  • 10LI F, ZHAO C, DING G, et al. A reliable and accurate indoor localization method using phone inertial sensors [C]. Proceedings of the 2012 ACM Conference on Ubiquitous Computing, ACM, 2012: 421-430.

共引文献85

同被引文献42

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部