摘要
混合像元效应是导致难以从TM影像中提取细小河流的主要原因。本文提出一种综合多种数字图像处理技术的细小河流自动识别方法。首先,利用阈值分割来区分水体指数影像中的细小河流与面状水体;然后,对水体指数进行线状特征增强,突出线状河流信息,并抑制其他地物信息;再利用双阈值线段追踪方法,提取影像中的细小河流;最后通过3种方法分别去除阴影、道路和其他类型噪声。结果表明,本文方法能有效地提取细小河流,同时排除多种噪声的干扰,结果的制图精度高于82%,用户精度高于93%,Kappa系数高于0.993,完整度高于90%。
Extraction of narrow rivers from TM images is challenging due to mixed-pixel effects.This paper presents an automatic approach for narrow river extraction by integrating multiple digital image processing techniques.Firstly,the threshold segmentation was applied on water-index images to separate from planar water bodies and narrow rivers.Secondly,a linear feature enhancement algorithm is adopted to highlight river information and suppress other information.Thirdly,narrow rivers are extracted using dual-threshold line tracking method.Finally,three methods are selected to remove shadow,roads and other noises.Experimental results show the approach can effectively extract narrow rivers with the producer's accuracy higher than 82%,user's accuracy higher than 93%,Kappa coefficient higher than 0.993,and completeness higher than 90%,and avoid impact from multiple kinds of noise.
出处
《测绘学报》
EI
CSCD
北大核心
2014年第7期705-710,共6页
Acta Geodaetica et Cartographica Sinica
基金
国家自然科学基金青年科学基金(41101364)
全球变化研究国家重大科学研究计划(2010CB950901)
资源与环境信息系统国家重点实验室自主部署创新研究计划资助项目(O88RA900KA)
关键词
特征提取
细小河流
遥感
水体指数
feature extraction
narrow river
remote sensing
water index