期刊文献+

On Triple Product and Rational Solutions of Yang–Baxter Equation

On Triple Product and Rational Solutions of Yang–Baxter Equation
原文传递
导出
摘要 The Yang–Baxter equation is reinvestigated in the framework of triple system. By requiring the rational R matrix of the Yang–Baxter equation satisfying the generalized Filippov condition, we derive a relation with respect to the rational R matrix. Moreover the case of the super Yang–Baxter equation is also investigated. The Yang–Baxter equation is reinvestigated in the framework of triple system. By requiring the rational R matrix of the Yang–Baxter equation satisfying the generalized Filippov condition, we derive a relation with respect to the rational R matrix. Moreover the case of the super Yang–Baxter equation is also investigated.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2014年第7期1-4,共4页 理论物理通讯(英文版)
基金 Supported by National Natural Science Foundation of China under Grant Nos.11375119 and 11031005 Beijing Municipal Commission of Education under Grant No.KZ201210028032
关键词 Yang–Baxter EQUATION TRIPLE PRODUCT R MATRIX Yang–Baxter equation,triple product,R matrix
  • 相关文献

参考文献5

  • 1苟立丹,薛康,王刚成.A 9×9 Matrix Representation of Birman-Wenzl-Murakami Algebra and Berry Phase in Yang-Baxter System[J].Communications in Theoretical Physics,2011,55(2):263-267. 被引量:2
  • 2Thomas Curtright,David Fairlie,Xiang Jin,Luca Mezincescu,Cosmas Zachos.Classical and quantal ternary algebras[J].Physics Letters B.2009(3)
  • 3Shankhadeep Chakrabortty,Alok Kumar,Sachin Jain.w <SUB>∞</SUB> 3-algebra[J].Journal of High Energy Physics.2008(09)
  • 4Thomas L. Curtright,David B. Fairlie,Cosmas K. Zachos.Ternary Virasoro–Witt algebra[J].Physics Letters B.2008(4)
  • 5Michio Jimbo.QuantumR matrix for the generalized Toda system[J].Communications in Mathematical Physics.1986(4)

二级参考文献26

  • 1C.N. Yang, Phys. Rev. Lett. 19 (1967) 1312; C.N. Yang, Phys. Rev. 168 (1968) 1920.
  • 2R.J. Baxter, Exactly Solved Models in Statistical Mechan- ics, Academic Press, New York (1982); R.J. Baxter, Ann. Phys. 70 (1972) 193.
  • 3L.H. Kauffman, Knots and Physics, World Scientific Publ. Co. Ltd., Singapore (1991).
  • 4C.N. Yang, M.L. Ge, et al, Braid Group, Knot Theory and Statistical Mechanics (I and II), World Scientific Publ. Co. Ltd., Singapore (1989) and (1994).
  • 5A.Y. Kitaev, Ann. Phys. 303 (2003) 2.
  • 6L.H. Kauffman and S.J. Lomonaco Jr., New J. Phys. 6 (2004) 134.
  • 7J. M. Franko, E.C. Rowell, and Z. Wang, J. Knot Theory Ramif. 15 (2006) 413.
  • 8Y. Zhang, L.H. Kauffman, and M.L. Ge, Int. J. Quant. Inf. 3 (2005) 669.
  • 9Y. Zhang and M.L. Ge, Quant. Inf. Proc. 3 (2007) 363; Y. Zhang, E.C. Rowell, Y.S. Wu, Z.H. Wang, and M L Ge, e-print, arxiv:quant-ph/0706.1761 (2007).
  • 10J.L. Chen, K. Xue, and M.L. Ge, Phys. Rev. A 76 (2007) 042324.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部