摘要
We propose a scheme to generate maximally entangled states of two distant Bose–Einstein condensates,which are trapped in different potential wells of a one-dimensional optical lattice. We show how such maximally entangled state can be used to test the Bell inequality and realize quantum teleportation of a Bose–Einstein condensate state. The scheme proposed here is based on the interference of Bose-Einstein condensates leaking out from different potential wells of optical lattice. It is briefly pointed out that this scheme can be extended to generate maximally entangled Greenberger–Horne–Zeilinger(GHZ) states of 2m(m > 1) distant Bose–Einstein condensates.
We propose a scheme to generate maximally entangled states of two distant Bose–Einstein condensates,which are trapped in different potential wells of a one-dimensional optical lattice. We show how such maximally entangled state can be used to test the Bell inequality and realize quantum teleportation of a Bose–Einstein condensate state. The scheme proposed here is based on the interference of Bose-Einstein condensates leaking out from different potential wells of optical lattice. It is briefly pointed out that this scheme can be extended to generate maximally entangled Greenberger–Horne–Zeilinger(GHZ) states of 2m(m > 1) distant Bose–Einstein condensates.
基金
Supported by National Fundamental Research Program,National Natural Science Foundation of China under Grant Nos.11274295,2011cba00200
Doctor Foundation of Education Ministry of China under Grant No.20113402110059