摘要
We study the properties of the heat flow generated by electric current in a quantum dot(QD) molecular sandwiched between two ferromagnetic leads. The heat is exchanged between the QD and the phonon reservoir coupled to it. We find that when the leads' magnetic moments are in parallel configuration, the total heat generation is independent on the leads' spin-polarization regardless of the magnitude of the intradot Coulomb interaction. This behavior is similar to that of the electronic current. In the antiparallel configuration, however, the influences of the leads' ferromagnetism on the heat generation are quite different from those on the electric current. Under the conditions of weak intradot Coulomb interaction and small bias voltage, the heat generation is monotonously suppressed by increasing leads' spin-polarization.Whereas for sufficient large intradot Coulomb interaction and bias voltage, the heat generation shows non-monotonous behavior due to the electron-phonon interaction and the spin accumulation induced on the dot. Furthermore, the magnitude of the negative differential of the heat generation previously found in a QD connected to nonmagnetic leads can be weakened by the increase of the spin-polarization of the ferromagnetic leads.
We study the properties of the heat flow generated by electric current in a quantum dot(QD) molecular sandwiched between two ferromagnetic leads. The heat is exchanged between the QD and the phonon reservoir coupled to it. We find that when the leads’ magnetic moments are in parallel configuration, the total heat generation is independent on the leads’ spin-polarization regardless of the magnitude of the intradot Coulomb interaction. This behavior is similar to that of the electronic current. In the antiparallel configuration, however, the influences of the leads’ ferromagnetism on the heat generation are quite different from those on the electric current. Under the conditions of weak intradot Coulomb interaction and small bias voltage, the heat generation is monotonously suppressed by increasing leads’ spin-polarization.Whereas for sufficient large intradot Coulomb interaction and bias voltage, the heat generation shows non-monotonous behavior due to the electron-phonon interaction and the spin accumulation induced on the dot. Furthermore, the magnitude of the negative differential of the heat generation previously found in a QD connected to nonmagnetic leads can be weakened by the increase of the spin-polarization of the ferromagnetic leads.
基金
Supported by National Natural Science Foundation of China under Grant No.61274101