期刊文献+

Interaction of Three Waves for the Extension(2+1)-Dimensional Sine-Gordon Equation

Interaction of Three Waves for the Extension(2+1)-Dimensional Sine-Gordon Equation
原文传递
导出
摘要 Exact solutions with three-wave form including three solitary wave, breather-type two-solitary wave, doubly breather-type of solitary wave, double-periodic kind of solitary wave are obtained using bilinear form and extended threewave approach with the aid of Maple. It is important that completed elastic collision, non-completed elastic collision,and fusion of three waves are investigated, respectively. Exact solutions with three-wave form including three solitary wave, breather-type two-solitary wave, doubly breather-type of solitary wave, double-periodic kind of solitary wave are obtained using bilinear form and extended threewave approach with the aid of Maple. It is important that completed elastic collision, non-completed elastic collision,and fusion of three waves are investigated, respectively.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2014年第11期707-710,共4页 理论物理通讯(英文版)
基金 Supported by National Natural Science Foundation of China under Grant No.11361048 Sichuan Educational Science Foundation under Grant No.12ZB069
关键词 extension(2+1)-dimensional SINE-GORDON equation three-wave solutions completed ELASTIC COLLISION non-completed ELASTIC COLLISION fusion extension (2+1)-dimensional Sine-Gordon equation three-wave solutions completed Elastic collision non-completed elastic collision fusion
  • 相关文献

参考文献4

  • 1许镇辉,陈翰林,鲜大权.Breather-Type Periodic Soliton Solutions for (1+1)-Dimensional Sinh-Poisson Equation[J].Communications in Theoretical Physics,2012,57(3):400-402. 被引量:2
  • 2Chuanjian Wang,Zhengde Dai,Lin Liang.Exact three-wave solution for higher dimensional KdV-type equation[J].Applied Mathematics and Computation.2010(2)
  • 3Zhengde Dai,Songqing Lin,Haiming Fu,Xiping Zeng.Exact three-wave solutions for the KP equation[J].Applied Mathematics and Computation.2010(5)
  • 4K.W. Chow.A class of doubly periodic waves for nonlinear evolution equations[J].Wave Motion.2002(1)

二级参考文献15

  • 1Z.D. Dai, S.L. Li, Q.Y. Dai, and J. Huang, Chaos, Soli- tons and Fractals 34 (2007) 1148.
  • 2W.X. Ma and E. Fan, Comput. Math. with Appl. 61 (2011) 95O.
  • 3Z.D. Dai, C.J. Wang, and L. Lin, Appl. Math. Comput.. 216 (2010) 501.
  • 4C.L. Zheng, J.Y. Qing, and S.H. Wang, Commun. Theor. Phys. 54 (2010) 1054.
  • 5Z.H. Xu and D.Q. Xian, Appl. Math. Comput. 215 (2010) 4439.
  • 6C. Rogers and W.K. Schief, Biiklund and Darboux Trans- formations: Geometry and Modern Applications in Soli- ton Theory, Cambridge University Press, New York (2002).
  • 7K.W. Chow, S.C. Tsang, and C.C. Mak, Phys. Fluids 15 (2003) 2437.
  • 8K.W. Chow, C.C. Mak, C. Rogers, and W.K. Schief, J. Comput. Appl. Math. 190 (2006) 114.
  • 9A. Maccari, Phys. Lett. A 336 (2005) 117.
  • 10J. Liu, Z.D. Dai, and S.Q. Lin, Commun. Theor. Phys. 53 (2010) 947.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部