摘要
We consider the problem of discriminating general quantum operations. Using the definition of mapping operator to vector, and by some calculating skills, we derive an explicit formulation as a new bound on the minimum-error probability for ambiguous discrimination between arbitrary m quantum operations. This formulation consists only of Kraus-operators, the dimension, and the priori probabilities of the discriminated quantum operations, and is independent of input states. To some extent, we further generalize the bounds on the minimum-error probability for discriminating mixed states to quantum operations.
We consider the problem of discriminating general quantum operations. Using the definition of mapping operator to vector, and by some calculating skills, we derive an explicit formulation as a new bound on the minimum-error probability for ambiguous discrimination between arbitrary m quantum operations. This formulation consists only of Kraus-operators, the dimension, and the priori probabilities of the discriminated quantum operations, and is independent of input states. To some extent, we further generalize the bounds on the minimum-error probability for discriminating mixed states to quantum operations.
基金
Supported by the Special Funds of the National Natural Science Foundation of China under Grant No.11247310
the Foundation for Distinguished Young Talents in Higher Education of Guangdong under Grant No.2012LYM 0096
the Start-up Funding of Hanshan Normal University under Grant No.QD20111123