摘要
The first principles calculations based on density functional theory(DFT) are employed to investigate the mechanical properties and electronic structure of N and Ta doped Ti C. The result shows that the co-doping of nitrogen and tantalum dilates the lattice constant and improves the stability of Ti C. Nitrogen and tantalum can significantly enhance the elastic constants and elastic moduli of Ti C. The results of B/G and C12-C44 indicate tantalum can markedly increase the ductility of Ti C. The electronic structure is calculated to describe the bonding characteristic, which revealed the strong hybridization between C-p and Ta-d and between N-p and Ti-d. The hardnessis is estimated by a semiempirical model that is based on the Mulliken overlap population and bond length. While the weakest bond takes determinative role of the hardness of materials, the addition of Ta sharply reduces the hardness of Ti C.
The first principles calculations based on density functional theory(DFT) are employed to investigate the mechanical properties and electronic structure of N and Ta doped Ti C. The result shows that the co-doping of nitrogen and tantalum dilates the lattice constant and improves the stability of Ti C. Nitrogen and tantalum can significantly enhance the elastic constants and elastic moduli of Ti C. The results of B/G and C12-C44 indicate tantalum can markedly increase the ductility of Ti C. The electronic structure is calculated to describe the bonding characteristic, which revealed the strong hybridization between C-p and Ta-d and between N-p and Ti-d. The hardnessis is estimated by a semiempirical model that is based on the Mulliken overlap population and bond length. While the weakest bond takes determinative role of the hardness of materials, the addition of Ta sharply reduces the hardness of Ti C.
基金
Supported by Program for New Century Excellent Talents in University(NCET-13-0394)
the National Natural Science Foundation of China under Grant No.51104103