期刊文献+

Soliton Interactions of the “Good” Boussinesq Equation on a Nonzero Background

Soliton Interactions of the “Good” Boussinesq Equation on a Nonzero Background
原文传递
导出
摘要 In this paper, we obtain the soliton solutions for the "good" Boussinesq equation on a constant background.Based on the asymptotic analysis of the solutions, we find that this equation admits both the elastic and resonant soliton interactions, as well as various partially inelastic interactions comprised of such two fundamental interactions. Via picture drawing, we present some examples of soliton interactions on nonzero backgrounds. Our results enrich the knowledge of soliton interactions in the(1+1)-dimensional integrable equation with a single field. In this paper, we obtain the soliton solutions for the 'good' Boussinesq equation on a constant background.Based on the asymptotic analysis of the solutions, we find that this equation admits both the elastic and resonant soliton interactions, as well as various partially inelastic interactions comprised of such two fundamental interactions. Via picture drawing, we present some examples of soliton interactions on nonzero backgrounds. Our results enrich the knowledge of soliton interactions in the(1+1)-dimensional integrable equation with a single field.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2015年第10期367-371,共5页 理论物理通讯(英文版)
基金 Supported by the Science Foundation of China University of Petroleum,Beijing under Grant Nos.2462015YQ0604 and 2462015QZDX02 the Special Funds of the National Natural Science Foundation of China under Grant No.11247267,and the National Natural Science Foundation of China under Grant Nos.11371371 and 11401031
关键词 SOLITON interactions BOUSSINESQ equation RESONANT soliton interactions Boussinesq equation resonant
  • 相关文献

参考文献12

  • 1A. Bekir.Painlevé test for some (2<ce:hsp sp="0.25"/>+<ce:hsp sp="0.25"/>1)-dimensional nonlinear equations[J]. Chaos, Solitons and Fractals . 2006 (2)
  • 2Peter A. Clarkson.Nonclassical symmetry reductions of the Boussinesq equation[J]. Chaos, Solitons and Fractals . 1995 (12)
  • 3Karl R. Helfrich,Joseph Pedlosky.Time-dependent isolated anomalies in zonal flows. Journal of Fluid Mechanics . 1993
  • 4Helfrich, Karl R.,Pedlosky, Joseph.Large-amplitude coherent anomalies in baroclinic zonal flows. Journal of the Atmospheric Sciences . 1995
  • 5Ablowitz M J,Clarkson P A.Solitons, nonlinear evolution equations and inverse scattering. . 1991
  • 6John Weiss.The Painlevé property and B?cklund transformations for the sequence of Boussinesq equations. Journal of Mathematical Physics . 1985
  • 7Chun-Xia Li,Wen-Xiu Ma,Xiao-Jun Liu,Yun-Bo Zeng.Wronskian solutions of the Boussinesq equation -- solitons, negatons, positons and complexitons. Inverse Problems . 2007
  • 8V.S. Manoranjan,T. Ortega,J.M. Sanz-Serna.Soliton and antisoliton interactions in the ``good’’ Boussinesq equation. Journal of Mathematical Physics . 1988
  • 9John W. Miles.Resonantly interacting solitary waves. Journal of Fluid Mechanics . 1977
  • 10Gino Biondini,S. Chakravarty.Soliton solutions of the Kadomtsev-Petviashvili II equation. Journal of Mathematical Physics . 2006

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部