期刊文献+

A Statistical Mechanical Analysis on the Bound State Solution of an Energy-Dependent Deformed Hulthén Potential Energy

A Statistical Mechanical Analysis on the Bound State Solution of an Energy-Dependent Deformed Hulthén Potential Energy
原文传递
导出
摘要 In this article, we investigate the bound state solution of the Klein Gordon equation under mixed vector and scalar coupling of an energy-dependent deformed Hulthén potential in D dimensions. We obtain a transcendental equation after we impose the boundary conditions. We calculate energy spectra in four different limits and in arbitrary dimension via the Newton-Raphson method. Then, we use a statistical method, namely canonical partition function, and discuss the thermodynamic properties of the system in a comprehensive way. We find out that some of the thermodynamic properties overlap with each other, some of them do not. In this article, we investigate the bound state solution of the Klein Gordon equation under mixed vector and scalar coupling of an energy-dependent deformed Hulthén potential in D dimensions. We obtain a transcendental equation after we impose the boundary conditions. We calculate energy spectra in four different limits and in arbitrary dimension via the Newton-Raphson method. Then, we use a statistical method, namely canonical partition function, and discuss the thermodynamic properties of the system in a comprehensive way. We find out that some of the thermodynamic properties overlap with each other, some of them do not.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2019年第9期1127-1138,共12页 理论物理通讯(英文版)
基金 Supported by the Turkish Science and Research Council(TUBITAK)and Akdeniz University
关键词 KLEIN-GORDON equation energy-dependent DEFORMED Hulthén potential energy bound state SOLUTION thermodynamic properties Klein-Gordon equation energy-dependent deformed Hulthén potential energy bound state solution thermodynamic properties
  • 相关文献

参考文献3

二级参考文献100

  • 1Ginocchio J N 2005 Phys. Rep. 414 165.
  • 2Ginocchio J N and Leviatan A 1998 Phys. Lett. B 425 1.
  • 3Mao G 2003 Phys. Rev. C 67 044318.
  • 4Alberto P, Lisboa R, Malheiro M and de Castro A S 2005 Phys. Rev. C 71 034313.
  • 5Furnstahl R F, Rusnak J J and Serot B D 1998 Nucl. Phys. A 632 607.
  • 6Wei G F and Dong S H 2008 Phys. Lett. A 373 49.
  • 7Wei G F and Dong S H 2009 Europhys. Lett. 87 40004.
  • 8Nazarewicz W, et al. 1990 Phys. Rev. Lett. 64 1654.
  • 9Wei G F and Dong S H 2010 Phys. Scr. 81 035009.
  • 10Zarrinkamar S, Rajabi A A and Hassanabadi H 2010 Ann. Phys. (New York) 325 2522.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部