摘要
在高等代数中,通常采用初等行变换计算矩阵的秩和行空间的基。该方法不可避免地涉及到除法运算,使得计算中出现很多分数,从而导致出错率和运算量增加。针对上述情况,给出一种新的矩阵秩的求解方法,该方法可以有效的避免除法运算,从而实现了对初等行变换的改进。
In most of advanced algebra textbooks,to determine the rank of a matrix and a basis for its row space,students are usually instructed to reduce this matrix to equivalent echelon form by using elementary row operations.This approach encounters division inevitably,thus a lot of fractional numbers are appeared during the calculation.Therefore,this method can eliminate errors in operation and improve the transformation of elementary row.
出处
《长江大学学报(自科版)(上旬)》
CAS
2014年第12期1-2,15,3,共4页
JOURNAL OF YANGTZE UNIVERSITY (NATURAL SCIENCE EDITION) SCI & ENG
关键词
秩
初等变换
等价
matrix
rank
elementary transformation
equivalent