期刊文献+

非自衡时滞过程的一种闭环辨识方法

A Closed-Loop Identification Method for Integrating Process with Delay
下载PDF
导出
摘要 非自衡时滞过程作为一种开环不稳定过程 ,开环辨识测试过程中的外界扰动将产生不确定性影响 .为此 ,提出一种闭环频域辨识方法 ,该方法由两部分构成 :1采用双通道继电反馈方法( Two- channel Relay Feedback Test,TRFT)以闭环的方式提取非自衡时滞过程多点频率特性 ,该方法在保证系统的稳定性的同时 ,能够克服扰动对这种开环不稳定过程的不确定性影响 ;2一种非自衡时滞过程的频域辨识算法 ,用以估计系统带有时滞的传递函数模型 .仿真结果验证了所提出方法的有效性 .该方法可与非自衡过程控制器设计方法相结合 。 For an integral process, disturbances during the identification test of open loop identification will lead to some uncertain effect. In order to overcome such a problem, a closed loop frequency domain identification method was presented, which is consisted of two parts. ① Two channel Relay Feedback Test (TRFT) can be used to extract the multi point frequency characteristics of integral process in the closed loop and avoid the uncertainty resulted from the open loop identification test. ② A frequency domain identification algorithm is developed to estimate the time delay transfer function model of integral process. The simulation shows the effectiveness and verifies the presented method. This method can be combined with the controller design strategies of integral process and improve the control quality.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2002年第8期1161-1164,共4页 Journal of Shanghai Jiaotong University
关键词 非自衡时滞过程 闭环辨识 双通道继电特性 极限环振荡 频域辨识 过程控制 自动控制原理 integrating process two channel relay limit cycle oscillation frequency domain identification
  • 相关文献

参考文献2

二级参考文献11

  • 1张卫东,孙优贤.大纯滞后对象的H_2鲁棒控制[J].控制理论与应用,1996,13(4):495-499. 被引量:9
  • 2[1]pintelon R., Some results on identifying linear systems using frequency domain data[A].Proceedings of 32nd IEEE Conference on Decision and Control, 1993,3534-3538.
  • 3[2]Schoukens J, Pintelon R. Identification of linear dynamic systems using piecewise constant excitations:use,misuse and alternatives[J]. Automatica,1994,30:1153-1169.
  • 4[3]Levy E C. Complex-curve fitting[J].IEEE Transactions on Automatic Control, 1959,4:37-44
  • 5[4]Sanathanan C K, Koerner J. Transfer function synthesis as a ratio of two complex polynomials [J].IEEE Transactions on Automatic Control, 1963,9:56-58.
  • 6[5]Lawrence P J, Rogers G J. Sequential transfer-function synthesis from measure data[J]. Proceedings of Iee, 1979,126:104-106
  • 7[6]Whitfield A H. Asymptotic behavior of transfer function synthesis methods[J]. International Journal of Control, 1987,45:1083-1092.
  • 8[7]Halevi Y.Reduced-order models with delay[J]. International Journal of Control,1996,64:733-744,
  • 9[8]Seborg D E, Edar T F, Mellichamp D A. Process Dynamics and Control[M].New York: Wiley,1989.
  • 10[9]Whitfield A H,Williams N G. Integral least-squares technique for frequency-domain model reduction[J]. Int J Systems Cci,1988,8:1355-1373.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部