期刊文献+

In vitro corrosion resistance and antibacterial performance of noveltin dioxide-doped calcium phosphate coating on degradable Mg-1Li-1Ca alloy 被引量:14

In vitro corrosion resistance and antibacterial performance of noveltin dioxide-doped calcium phosphate coating on degradable Mg-1Li-1Ca alloy
原文传递
导出
摘要 A SnO_2-doped calcium phosphate(Ca-P-Sn) coating was constructed on Mg-1 Li-1 Ca alloy by a hydrothermal process. The fabricated functional coatings were investigated using scanning electron microscopy(SEM), X-ray diffraction(XRD) and Fourier transform infrared spectroscopy(FT-IR). A triple-layered structure, which is composed of Ca_3(PO_4)_2,(Ca, Mg)_3(PO_4)_2, SnO_2, and MgHPO_4·3 H_2O, is evident and leads to the formation of Ca_(10)(PO_4)_6(OH)_2 in Hank's solution. Electrochemical measurements, hydrogen evolution tests and plating counts reveal that the corrosion resistance and antibacterial activity were improved through the coating treatment. The embedded SnO_2 nanoparticles enhanced crystallisation of the coating.The formation and degradation mechanisms of the coating were discussed. A SnO_2-doped calcium phosphate(Ca-P-Sn) coating was constructed on Mg-1 Li-1 Ca alloy by a hydrothermal process. The fabricated functional coatings were investigated using scanning electron microscopy(SEM), X-ray diffraction(XRD) and Fourier transform infrared spectroscopy(FT-IR). A triple-layered structure, which is composed of Ca_3(PO_4)_2,(Ca, Mg)_3(PO_4)_2, SnO_2, and MgHPO_4·3 H_2O, is evident and leads to the formation of Ca_(10)(PO_4)_6(OH)_2 in Hank's solution. Electrochemical measurements, hydrogen evolution tests and plating counts reveal that the corrosion resistance and antibacterial activity were improved through the coating treatment. The embedded SnO_2 nanoparticles enhanced crystallisation of the coating.The formation and degradation mechanisms of the coating were discussed.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第3期254-265,共12页 材料科学技术(英文版)
基金 supported by the National Natural Science Foundation of China (51571134) the Research Fund of Shandong University of Science and Technology (2014TDJH104)
关键词 MAGNESIUM ALLOYS Coatings Corrosion BIOMEDICAL materials Magnesium alloys Coatings Corrosion Biomedical materials
  • 相关文献

同被引文献163

引证文献14

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部