期刊文献+

基于粗糙集理论优化神经网络方法的轴承故障诊断 被引量:1

Bearing Breakdown Diagnosis of Rough Collection Theory Optimization Neural Network Method
下载PDF
导出
摘要 用于轴承故障诊断方法有多种,如基频检测法、轴心轨迹图和响应信号的功率谱分析法等,但往往难以实现实时监测和诊断。人工神经网络技术由于其具有极强的非线性映射,能在故障诊断中得到广泛应用,但存在联想能力有限,超过界线易以错误的方式联想,决策系统就会产生误判或漏判的现象。提出了使用粗糙集理论优化BP神经网络模型方法,并将优化后的网络模型应用于滚动轴承的故障诊断中。 There are many kinds of the methods to diagnose the bearing breakdown,such as the method of base frequency test,the axle center trajectory diagram and the response signal power spectrum analytic method and so on,but it is often difficult to realize the real-time monitor and the diagnosis.Owing to the greatly strengthened non-linear insinuation,the artificial neural network technology can obtain the widespread application in the breakdown diagnosis,but the ability of association is limited.When it surpasses the demarcation line,it usually associates in the wrong way and the decision system will have the phenomena of misjudging or without judging.This article proposes a usage of rough collection theory by optimizing the BP nerve network model method,and will apply the optimized network model in the rolling bearing breakdown diagnosis.
机构地区 宿迁学院
出处 《煤矿机械》 北大核心 2005年第11期174-175,共2页 Coal Mine Machinery
关键词 轴承故障 人工神经网络 优化 粗糙集理论 bearing breakdown artificial neural networks optimization rough collection theory
  • 相关文献

参考文献4

二级参考文献25

  • 1杨建刚,戴德成,高亹,曹祖庆.改进BP网络在旋转机械故障诊断中的应用[J].振动工程学报,1995,8(4):342-350. 被引量:17
  • 2孙健,邱阿瑞.运用人工神经网络诊断电机轴承故障[J].电工电能新技术,1996,15(4):1-6. 被引量:5
  • 3臧朝平,张思,高亹.用于旋转机械故障诊断的一种张量增强型前向神经网络模型[J].机械强度,1996,18(3):6-9. 被引量:4
  • 4杨勇.[D].南京:东南大学(Nanjing:Southeast University),2000.
  • 5Salvatore Greco, Benedetto Matarazzo, Roman Slowinski. Rough sets theory for multicriteria decision analysis[J]. European Journal of Operational Research, 2001, 28(1): 1-47.
  • 6Yahia M E, Mahmod R, Sulaiman N, et al. Rough nearul expert systems[J]. Expert Systems with Appticalions, 2000, 18(1): 87-99.
  • 7Ryszard Nowicki, Roman Slowinski, Jerzy Stefanowski. Evlualion of vibroacoustic dignostic symptoms by means of the rough sets theory[J]. Computers in Industry, 1992, 20(2): 141-152.
  • 8曾黄磷.粗集理论及其应用[M].重庆大学出版社,1996,9..
  • 9Wu X,Comput Struct,1992年,42卷,4期,649页
  • 10Chen Zunde,Pattern Recognition Artificial Intelligence,1999年,12卷,1期,1页

共引文献75

同被引文献16

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部