摘要
通过对有色金属腐蚀图像的增强处理,提高对腐蚀图像的修复和识别能力,提出一种基于小波变换的有色金属腐蚀图像自适应增强算法,对采集的有色金属腐蚀图像进行腐蚀边缘轮廓特征提取预处理,采用小波变换算法进行腐蚀图像的浊点标定,结合自适应匹配滤波检测实现图像增强算法改进。仿真结果表明,采用该算法进行图像增强,能提高腐蚀金属图像输出的峰值信噪比,性能指标优于传统方法。
On the basis of nonferrous metal corrosion image enhancement processing, improve the corrosion image restoration and recognition ability, put forward a based on wavelet transform of nonferrous metal corrosion image adaptive enhancement algorithm, on the acquisition of the nonferrous metal corrosion images of corrosion edge contour feature extraction pretreatment, corrosion images of the cloud point calibration using wavelet transform algorithm, combined with the adaptive matched filter detection for image enhancement algorithm improves. The simulation results show that the proposed algorithm can improve the peak signal to noise ratio, and the performance index is better than the traditional method.
出处
《世界有色金属》
2016年第13期134-,136,共2页
World Nonferrous Metals
关键词
小波变换
边缘轮廓特征提取
有色金属
腐蚀图像
wavelet transform
edge contour feature extraction
nonferrous metals
corrosion image