期刊文献+

挤压态Mg-8Gd-1Er-0.5Zr合金的抗蠕变性能 被引量:2

Creep Resistance of As-extruded Mg-8Gd-1Er-0.5Zr Alloy
原文传递
导出
摘要 研究了挤压态Mg-8Gd-1Er-0.5Zr合金在不同温度(150~200℃)和应力(50~70MPa)条件下100h的蠕变行为。利用OM、TEM等手段观察了蠕变过程中的组织演变规律,并对蠕变机理进行了分析。结果表明,在本实验条件下,合金表现出优异的抗蠕变性能,所有的蠕变曲线均呈现出减速蠕变和稳态蠕变两个阶段;在150℃/50 MPa时稳态蠕变速率仅为6.48×10^(-11)s^(-1),蠕变量为0.007%;在200℃/50 MPa时稳态蠕变速率为4.26×10^(-9) s^(-1),蠕变量为0.226%;温度较低时(150℃)主要为扩散蠕变控制机制,温度较高时(175,200℃)蠕变机制以位错蠕变为主。蠕变过程中晶内析出的β′相与镁基体具有一定的位相关系:(020)β′//[10 10]Mg,[001]β′//[0001]Mg,阻碍位错运动,而晶界析出的β相可以钉扎晶界。二者协同作用,促进合金高温抗蠕变性能的提高。 The creep behavior of the as-extruded Mg-8 Gd-1 Er-0.5 Zr alloy at various temperatures(150~200 oC) and stresses(50~70 MPa)for 100 h was studied. The microstructure evolution during creep was investigated by optical microscopy(OM) and transmission electron microscopy(TEM), and the creep mechanism was analyzed. The results show that the alloy exhibits good creep resistance under the experimental conditions. The creep curves can be divided into two stages: a deceleration creep stage and a steady creep stage. The steady-state creep rate is 6.48× 10-11 s-1 and the creep strain is 0.007% at the temperature of 150 oC and the stress of 50 MPa, while the steady-state creep rate is 4.26× 10-9 s-1 and the creep strain is 0.226% at the temperature of 200 oC and the stress of 50 MPa. In the case of lower temperature(150 oC), diffusion mechanism acts as the main control mechanism, whereas dislocation mechanism dominates at higher temperatures(175, 200 oC). Furthermore, the precipitates of β′ phase in grains and the β phase at grain boundaries form during the creep process. The orientation relationship between the β′ phase and the α-Mg matrix is(020)β′//[10 10]Mg, [001]β′//[0001]Mg. The β′ phase can effectively inhibit the dislocation gliding, and the β phase can pin gain boundaries, both of which play an important role synergistically in improving the high temperature creep resistance of the alloy.
作者 李淑波 李瑞静 王朝辉 刘轲 杜文博 Li Shubo;Li Ruijing;Wang Zhaohui;Liu Ke;Du Wenbo(Beijing University of Technology,Beijing 100124,China)
机构地区 北京工业大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2019年第2期545-551,共7页 Rare Metal Materials and Engineering
基金 国家重点研发计划(2016YFB0301101-1) 国家自然科学基金(51401005) 北京市自然科学基金(2162003)
关键词 Mg-8Gd-1Er-0.5Zr合金 挤压 抗蠕变性能 蠕变机制 析出相 Mg-8Gd-1Er-0.5Zr alloy extrusion creep resistance creep mechanism precipitates
  • 相关文献

参考文献3

二级参考文献32

  • 1王渠东,丁文江.镁合金研究开发现状与展望[J].世界有色金属,2004(7):8-11. 被引量:69
  • 2魏修宇,谭澄宇,郑子樵,李劲风,李海,李艳芬.时效对2195铝锂合金腐蚀行为的影响[J].中国有色金属学报,2004,14(7):1195-1200. 被引量:30
  • 3王斌,易丹青,周玲伶,方西亚,罗文海,杨洁.稀土元素Y和Nd对Mg-Zn-Zr系合金组织和性能的影响[J].金属热处理,2005,30(7):9-13. 被引量:46
  • 4张国定 赵昌正.金属基复合材料[M].上海:上海交通大学出版社,1993..
  • 5坎贝尔J E.断裂力学在选材方面的应用[M].汪一麟,邵本逑,译.北京:冶金工业出版社,1932.
  • 6Mordike B L. Creep-resistant magnesium alloys[J]. Materials Science and Engineering A,2002,324(1-2) : 103 - 112.
  • 7Cvijovic Z, et al. Micromechanical modelling of fracture toughness in overaged 7000 alloy forgings [ J ]. Materials Science and Engineering A,2006,434(2):339-346.
  • 8Lorimer G W, Nicholson B. Further results on the nucleation of precipitates in the A1-Zn-Mg system [ J ]. Acta Metallurgica, 1966,14: 1009-1013.
  • 9Varley P C, Day M K B, Sendork A. The structure and mechanical properties of high-purity aluminum -zinc-magnesium alloys [ J ]. Journal of the Institute of Metals, 1957-1958,86:337-351
  • 10Krol T,et al. The formation of precipitate free zones along grain boundaries in a superalloy and the ensuing effects on its plastic deformation[ J]. Acta Materialia, 2004,52 : 2095- 2108.

共引文献7

同被引文献26

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部