摘要
研究了挤压态Mg-8Gd-1Er-0.5Zr合金在不同温度(150~200℃)和应力(50~70MPa)条件下100h的蠕变行为。利用OM、TEM等手段观察了蠕变过程中的组织演变规律,并对蠕变机理进行了分析。结果表明,在本实验条件下,合金表现出优异的抗蠕变性能,所有的蠕变曲线均呈现出减速蠕变和稳态蠕变两个阶段;在150℃/50 MPa时稳态蠕变速率仅为6.48×10^(-11)s^(-1),蠕变量为0.007%;在200℃/50 MPa时稳态蠕变速率为4.26×10^(-9) s^(-1),蠕变量为0.226%;温度较低时(150℃)主要为扩散蠕变控制机制,温度较高时(175,200℃)蠕变机制以位错蠕变为主。蠕变过程中晶内析出的β′相与镁基体具有一定的位相关系:(020)β′//[10 10]Mg,[001]β′//[0001]Mg,阻碍位错运动,而晶界析出的β相可以钉扎晶界。二者协同作用,促进合金高温抗蠕变性能的提高。
The creep behavior of the as-extruded Mg-8 Gd-1 Er-0.5 Zr alloy at various temperatures(150~200 oC) and stresses(50~70 MPa)for 100 h was studied. The microstructure evolution during creep was investigated by optical microscopy(OM) and transmission electron microscopy(TEM), and the creep mechanism was analyzed. The results show that the alloy exhibits good creep resistance under the experimental conditions. The creep curves can be divided into two stages: a deceleration creep stage and a steady creep stage. The steady-state creep rate is 6.48× 10-11 s-1 and the creep strain is 0.007% at the temperature of 150 oC and the stress of 50 MPa, while the steady-state creep rate is 4.26× 10-9 s-1 and the creep strain is 0.226% at the temperature of 200 oC and the stress of 50 MPa. In the case of lower temperature(150 oC), diffusion mechanism acts as the main control mechanism, whereas dislocation mechanism dominates at higher temperatures(175, 200 oC). Furthermore, the precipitates of β′ phase in grains and the β phase at grain boundaries form during the creep process. The orientation relationship between the β′ phase and the α-Mg matrix is(020)β′//[10 10]Mg, [001]β′//[0001]Mg. The β′ phase can effectively inhibit the dislocation gliding, and the β phase can pin gain boundaries, both of which play an important role synergistically in improving the high temperature creep resistance of the alloy.
作者
李淑波
李瑞静
王朝辉
刘轲
杜文博
Li Shubo;Li Ruijing;Wang Zhaohui;Liu Ke;Du Wenbo(Beijing University of Technology,Beijing 100124,China)
出处
《稀有金属材料与工程》
SCIE
EI
CAS
CSCD
北大核心
2019年第2期545-551,共7页
Rare Metal Materials and Engineering
基金
国家重点研发计划(2016YFB0301101-1)
国家自然科学基金(51401005)
北京市自然科学基金(2162003)