期刊文献+

A No—Go Theorem for Nonlinear Canonical Quantization

下载PDF
导出
摘要 We want to point out thc following strcngthcning of the classical theorem of Grocnewold and van Hove:There exists no ,napping Op from polynomial observables f (p, q) on the phase space R2n into linear operators on L2(Rn)which would map Poisson brackets into commutators, the position and momentum obscrvablcs p and q into the usual(Schrodinger) position and momentum operators, and would obey the yon Neumann rifle 0p(cfk) = c 0p(f)k for k = 1,2, 3and c R. The point is that neither linearity, nor continuity etc. of Op are assumed.
机构地区 MUAVCR
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2002年第3期287-288,共2页 理论物理通讯(英文版)
  • 相关文献

参考文献10

  • 1P.A.M. Dirac, The Principles of Quantum Mechanics, 3rd ed., Oxford, London (1947).
  • 2J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton (1955).
  • 3H. Weyl, The Theory of Groups and Quantum Mechanics,Dover, New York (1931).
  • 4G.B. Folland, Annals of Mathematics Studies, Princeton University Press, Princeton (1989) Vol. 122.
  • 5R. Arens and D. Babbitt, J. Math. Phys. 6 (1965) 1071.
  • 6H.J. Groenewold, Physica 12 (1946) 405.
  • 7L. van Hove, Mem. Acad. Roy. de Belgique, Classe des Sci. 26 (1951) No. 6.
  • 8M.J. Gotay, "Obstructions to Quantization", The Juan Simo Memorial Volume, eds J. Marsden and S. Wiggins,Springer Verlag, Berlin-Heidelberg-New York (2000).
  • 9G.M. Tuynman, Mathematical Structure.s in Field Theory, (Proc. Seminar 1989 1990), CWI Syllabi 39 Math.Centrum, CWI, Amsterdam (1996) pp. 1 28.
  • 10D.H. Bao and Z.Y. Zhu, J. Phys. A25 (1992) 2381.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部