期刊文献+

一种改进的否定选择算法在入侵检测中的应用

ApplicationI on of an Improved Negative Selection Algorithm in Trusion Detection
原文传递
导出
摘要 有效的检测器生成算法是入侵检测的核心问题。针对现有算法存在检测率低、匹配阈值固定、检测器集合庞大等问题,通过对人工免疫系统中否定选择算法原理的分析,提出一种生成最有效检测器集的变阚值模糊匹配否定选择免疫算法,并将该算法应用到入侵检测系统中。算法采用随机生成和基因库相结合的候选检测器生成机制,在保证检测器多样性的同时,提高了候选检测器成为成熟检测器的比率。为了消除冗余检测器的产生,提高检测器集的检测效率,算法在模糊匹配的基础上生成有效检测器集。同时,匹配阈值可变,可大幅降低黑洞数量。实验结果表明,该算法提高了入侵检测率,降低了虚警率,整体检测性能较好。 Efficient detector generation algorithm is the core of intrusion detection.Aiming at the problems of existing algorithms such as low detection rate,unhandy matching threshold value and large detector set size,in this paper we analyse the negative selection algorithm principle in artificial immune system,put forward an adjustable threshold and fuzzy matching negative selection immune algorithm for generaring the most effective detector set.and apply the algorithm to intrusion detection system.The algorithm adopts the candidate detector generation mechanism which combines random generation with gene library,it ensures the diversity of detector while increasing the proportion of making candidate detectors to mature ones.In order to eliminate the occurrence of redundant detectors and increase the detecting efficiency of detector sets,in the algorithm an effective detector set is created on the basis of fuzzy matching.At the same time,the number of black hdes can be reduced sharply through adjusting the matching threshold.Experimental results show that the algorithm improves the detection rate and reduces the false alarnl rate.SO it has a better overall detection performance.
作者 伍海波
出处 《长沙医学院学报》 2014年第4期56-59,共4页 Journal of Changsha Medical University
基金 湖南教育厅科研基金项目(11C0140)
关键词 人工免疫系统 否定选择算法 入侵检测 检测器 Artificial immune systems Negative selection algorithm Intrusion detection Detector
  • 相关文献

参考文献7

  • 1柴争义,王献荣,王亮.用于异常检测的实值否定选择算法[J].吉林大学学报(工学版),2012,42(1):176-181. 被引量:12
  • 2胡博,胡敏,李渊珊.否定选择算法中一种改进的检测器集生成机制[J].计算机应用研究,2011,28(1):137-138. 被引量:3
  • 3Ilhan Aydin,Mehmet Karakose,Erhan Akin.Chaotic-based hybrid negative selection algorithm and its applications in fault and anomaly detection[J]. Expert Systems With Applications . 2010 (7)
  • 4Zhou Ji,Dipankar Dasgupta.V-detector : An efficient negative selection algorithm with “probably adequate” detector coverage[J]. Information Sciences . 2008 (10)
  • 5GONZALEZ F,,DASGUPTA D,KOZEMA D.Combining Negative and Classification Techniques for Anomaly Detection. Proceedings of the 2002 Congress on Evolutionary Computation CEC2002 . 2002
  • 6Forrest S,Perelson AS,Allen L,et al.Self-Nonself Discrimination in a Computer. Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy . 1994
  • 7Gonzalez F,Dasgupt4 D,Nino L F.A Randomized Real-valued Negative Selection Algorithm. Prec.ofGECCO’’05 . 2005

二级参考文献23

  • 1BERETA M,BURCZYNSKI T.Comparing binary and real-valued co-ding in hybrid immune algorithm for feature selection and classification of ECG signals[J].Engineering Applications Artificial Intelligence,2007,20(5):571-585.
  • 2GONZALEZ F,DASGUPTA D,NINO L F.A randomized rea-valued negative selection algorithm,ICARIS-03[R].2005.
  • 3ZHOU Ji,DASGUPTA D.Real-valued negative selection algorithm with variable-sized detectors[C]//Proc of Genetic and Evolutionary Computation.Berlin:Springer,2007:287-298.
  • 4ZHOU Ji,DASGUPTA D.Applicability issues of the real-valued negative selection algorithms[C]//Proc of Genetic and Evolutionary Computation Conference.2007:111-118.
  • 5STIBOR T,TIMMIS J,ECKERT C.A comparative study of real-valued negative selection to statistical anomaly detection techniques[C]//Proc of the 4th International Conference on Artificial Immune Systems.2005:262-275.
  • 6Columbia University.2DSyntheticData [EB/OL].[2010-03-12].http:∥www.zhouji.net/prof/2DSyntheticData.zip.
  • 7StatLib datasets archive [ EB/OL]. http://lib. stat. cmu. edu//dataset/.
  • 8Bereta M,Burczy'nski T. Comparing binary and re- al-valued coding in hybrid immune algorithm for fea- ture selection and classification of ecg signals[J]. Eng Appl Artif Intell, 2007,20(5):571-585.
  • 9Gonzdlez F, Dasgupta D, Kozma R. Combining negative selection and classification techniques for a- nomaly detection[C]//Proceedings of the 2002 Con- gress on Evolutionary Computation CEC2002. USA:IEEE Press,2002:705-710.
  • 10Gonzdlez F A,Dasgupta D. Anomaly detection using real-valued negative selection[J]. Journal of Genetic Programming and Evolvable Machines, 2003,4 (4) : 383-403.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部