期刊文献+

Joint head pose and facial landmark regression from depth images 被引量:2

Joint head pose and facial landmark regression from depth images
原文传递
导出
摘要 This paper presents a joint head pose and facial landmark regression method with input from depth images for realtime application. Our main contributions are: firstly, a joint optimization method to estimate head pose and facial landmarks, i.e., the pose regression result provides supervised initialization for cascaded facial landmark regression, while the regression result for the facial landmarks can also help to further refine the head pose at each stage. Secondly,we classify the head pose space into 9 sub-spaces, and then use a cascaded random forest with a global shape constraint for training facial landmarks in each specific space. This classification-guided method can effectively handle the problem of large pose changes and occlusion.Lastly, we have built a 3D face database containing 73 subjects, each with 14 expressions in various head poses. Experiments on challenging databases show our method achieves state-of-the-art performance on both head pose estimation and facial landmark regression. This paper presents a joint head pose and facial landmark regression method with input from depth images for realtime application. Our main contributions are: firstly, a joint optimization method to estimate head pose and facial landmarks, i.e., the pose regression result provides supervised initialization for cascaded facial landmark regression, while the regression result for the facial landmarks can also help to further refine the head pose at each stage. Secondly,we classify the head pose space into 9 sub-spaces, and then use a cascaded random forest with a global shape constraint for training facial landmarks in each specific space. This classification-guided method can effectively handle the problem of large pose changes and occlusion.Lastly, we have built a 3D face database containing 73 subjects, each with 14 expressions in various head poses. Experiments on challenging databases show our method achieves state-of-the-art performance on both head pose estimation and facial landmark regression.
出处 《Computational Visual Media》 CSCD 2017年第3期229-241,共13页 计算可视媒体(英文版)
基金 supported by the National Key Technologies R&D Program of China (No. 2016YFC0800501) the National Natural Science Foundation of China (No. 61672481)
关键词 head pose facial landmarks depth images head pose facial landmarks depth images
  • 相关文献

参考文献1

共引文献6

同被引文献8

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部