期刊文献+

Recurrent 3D attentional networks for end-to-end active object recognition

Recurrent 3D attentional networks for end-to-end active object recognition
原文传递
导出
摘要 Active vision is inherently attention-driven:an agent actively selects views to attend in order to rapidly perform a vision task while improving its internal representation of the scene being observed.Inspired by the recent success of attention-based models in 2D vision tasks based on single RGB images, we address multi-view depth-based active object recognition using an attention mechanism, by use of an end-to-end recurrent 3D attentional network. The architecture takes advantage of a recurrent neural network to store and update an internal representation. Our model,trained with 3D shape datasets, is able to iteratively attend the best views targeting an object of interest for recognizing it. To realize 3D view selection, we derive a 3D spatial transformer network. It is dierentiable,allowing training with backpropagation, and so achieving much faster convergence than the reinforcement learning employed by most existing attention-based models. Experiments show that our method, with only depth input, achieves state-of-the-art next-best-view performance both in terms of time taken and recognition accuracy. Active vision is inherently attention-driven:an agent actively selects views to attend in order to rapidly perform a vision task while improving its internal representation of the scene being observed.Inspired by the recent success of attention-based models in 2D vision tasks based on single RGB images, we address multi-view depth-based active object recognition using an attention mechanism, by use of an end-to-end recurrent 3D attentional network. The architecture takes advantage of a recurrent neural network to store and update an internal representation. Our model,trained with 3D shape datasets, is able to iteratively attend the best views targeting an object of interest for recognizing it. To realize 3D view selection, we derive a 3D spatial transformer network. It is dierentiable,allowing training with backpropagation, and so achieving much faster convergence than the reinforcement learning employed by most existing attention-based models. Experiments show that our method, with only depth input, achieves state-of-the-art next-best-view performance both in terms of time taken and recognition accuracy.
出处 《Computational Visual Media》 CSCD 2019年第1期91-103,共13页 计算可视媒体(英文版)
基金 supported by National Natural Science Foundation of China (Nos. 61572507, 61622212, and 61532003) supported by the China Scholarship Council
关键词 active object RECOGNITION RECURRENT NEURAL network next-best-view 3D ATTENTION active object recognition recurrent neural network next-best-view 3D attention
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部