期刊文献+

TaC增强铁基梯度复合材料的原位生成及其磨粒磨损特性 被引量:4

Abrasive Wear Characteristics of Surface Gradient Composites of TaC Reinforced Iron Matrix Prepared by In-Situ Technology
原文传递
导出
摘要 以高纯钽板为原料,采用原位反应法在HT300表面制备了碳化钽增强表面梯度复合材料。用扫描电子显微镜、X射线衍射仪、显微硬度计和磨粒磨损试验机对复合层的微观形貌、物相组成、显微硬度以及磨粒磨损性能进行了表征。结果表明:所得复合层的总厚度约为475μm。最表层为碳化钽致密陶瓷层,厚度约为170μm,其颗粒尺寸小于1μm,体积分数近似95%,显微硬度最高值达2328HV0.1;次表层为碳化钽颗粒分散层,其颗粒尺寸为0.5~1.5μm,体积分数从90%逐渐减小至基体,显微硬度由915HV0.1降低至410HV0.1;复合层与基体之间呈现良好的冶金结合。铁基表面碳化钽陶瓷增强梯度复合材料的耐磨性比灰口铸铁基体有大幅度提高;复合层的磨损是局部塑性变形、显微切削和增强颗粒的部分破碎等因素综合作用的结果。 Tantalum carbide gradient composite was fabricated via in-situ reaction of pure tantalum plate with gray cast at high temperature. The morphology, phase constituent, microhardness, and relative abrasion resistance of the composite were characterized by scanning electron microscopy, X-ray diffraction, microhardness tester and abrasive wear testing machine. The results show that the thickness of the gradient composite is about 475 μm. The cast 170 μm thick surface layer is a dense ceramic layer consisted of ~95% submicron TaC particles, and the highest micro-hardness value of which is 2328HV0.1; In the sub-layer, there exists a gradient distribution of TaC particles from 90% to 0% in volume fraction, correspondingly the microhardness value decreased from 915HV0.1to 410HV0.1, and the size of the TaC particles increased to 0.5-1.5 μm; the interface between the composite and matrix exhibits a perfect metallurgical bonding. The TaC reinforced iron matrix surface gradient composite shows far superior wear resistance than the gray cast iron. The wear mechanism is mainly related with the local plastic deformation,micro cracking caused by misrouted broken carbide particles.
出处 《材料研究学报》 EI CAS CSCD 北大核心 2014年第8期567-572,共6页 Chinese Journal of Materials Research
基金 国家高技术研究发展计划项目2013AA031803 国家自然科学基金项目51374169资助~~
关键词 复合材料 原位反应 致密陶瓷 磨粒磨损 composite,in-situ reaction,dense ceramic,abrasive wear
  • 相关文献

参考文献12

  • 1金鑫,吴林志,孙雨果,果立成,于红军.NiCr/ZrO_2功能梯度复合材料中混合型准静态裂纹启裂的数字散斑相关方法实验研究[J].复合材料学报,2009,26(6):150-154. 被引量:2
  • 2于思荣,任露泉,张新平,刘耀辉,何镇明.Al-10%Fe合金梯度材料的组织与性能[J].金属功能材料,2000,7(6):5-10. 被引量:3
  • 3Jiaoxi Yang,Falan Liu,Xuanhe Miao,Feng Yang.Influence of laser cladding process on the magnetic properties of WC–FeNiCr metal–matrix composite coatings[J].Journal of Materials Processing Tech.2012(9)
  • 4ShengTing Gu,GuoZhong Chai,HuaPing Wu,YuMei Bao.Characterization of local mechanical properties of laser-cladding H13–TiC composite coatings using nanoindentation and finite element analysis[J].Materials and Design.2012
  • 5Hua Yan,Peilei Zhang,Zhishui Yu,Chonggui Li,Ruidi Li.Development and characterization of laser surface cladding (Ti,W)C reinforced Ni–30Cu alloy composite coating on copper[J].Optics and Laser Technology.2011(5)
  • 6Lingqian Wang,Jiansong Zhou,Youjun Yu,Chun Guo,Jianmin Chen.Effect of powders refinement on the tribological behavior of Ni-based composite coatings by laser cladding[J].Applied Surface Science.2012(17)
  • 7M. Li,J. Huang,Y.Y. Zhu,Z.G. Li.Effect of heat input on the microstructure of in-situ synthesized TiN–TiB/Ti based composite coating by laser cladding[J].Surface & Coatings Technology (-).2012(19-20)
  • 8R.G. Song,C. Wang,Y. Jiang,H. Li,G. Lu,Z.X. Wang.Microstructure and properties of Al 2 O 3 /TiO 2 nanostructured ceramic composite coatings prepared by plasma spraying[J].Journal of Alloys and Compounds.2012
  • 9C.S. Ramesh,Abrar Ahamed.Friction and wear behaviour of cast Al 6063 based in situ metal matrix composites[J].Wear.2011(9)
  • 10Chun Guo,Jianmin Chen,Jiansong Zhou,Jierong Zhao,Lingqian Wang,Youjun Yu,Huidi Zhou.Effects of WC–Ni content on microstructure and wear resistance of laser cladding Ni-based alloys coating[J].Surface & Coatings Technology.2011(8)

二级参考文献24

  • 1Koizumi M. FGMs activities in Japan [J]. Composites Part B, 1997, 28: 1-4.
  • 2Eischen J W. Fracture of nonhomogeneous materials [J]. International Journal of Fracture, 1987, 34: 3-22.
  • 3Parameswaran V, Shukla A. Crack tip stress fields for dynamic fracture in functionally graded materials[J]. Mechanics of Materials, 1999, 31: 579-796.
  • 4Zhong Z, Shu D W, Jin B. Analysis of mode Ⅲ crack in a functionally gradient piezoelectric material[J]. Materials Science Forum, 2003, 15: 423-425.
  • 5Guo L C, Noda N. Modeling method for a crack problem o functionally graded materials with arbitrary properties piecewise exponential model[J]. International Journal Solid and Structures, 2007, 44: 6768-6790.
  • 6Kim J H, Paulino G H. Simulation of crack propagation in functionally graded materials under mixed mode and non- proportional loading[J]. International Journal of Mechanics and Materials in Design, 2004, 1:63 -94.
  • 7Dolbow J, Gosz M. On the computation of mixed mode stress intensity factors in functionally graded materials [J].International Journal Solids and Structures, 2002, 39:2557- 2574.
  • 8Zhang P W, Zhou Z G, Wu L Z. Basic solution of two parallel mode permeable cracks in functionally graded piezoelectric materials[J]. Archive of Applied Mechanics, 2008, 78:411- 430.
  • 9Rousseau C E, Tippur H V. Evaluation of crack tip fields and stress intensity factors in functionally graded materials: Cracks parallel to elastic gradient [J]. International Journal of Fracture, 2002, 114: 87-111.
  • 10Rousseau C E, Tippur H V. Influences of elastic variations on crack initiation in functionally graded glass filled epoxy [J].Engineering Fracture Mechanics, 2002, 69:1679-1693.

共引文献3

同被引文献69

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部