期刊文献+

The “Bottleneck” Behaviours in Linear Feedforward Neural Network Classifiers and Their Breakthrough 被引量:2

The “Bottleneck” Behaviours in Linear Feedforward Neural Network Classifiers and Their Breakthrough
原文传递
导出
摘要 The classification mechanisms of linear feedforward neural network classifiers (FNNC), whose hidden layer performs the Fisher linear transformation of the input patterns, under the supervision of outer-supervised signals are inves- tigated. The 'bottleneck' behaviours in linear FNNCs are observed and analyzed. In addition, the structure stabilities of the linear FNNCs are also discussed. It is pointed out that the key point to break through the 'bottleneck' behaviours for lin- ear FNNCs is to change linear hidden neurons into nonlinear hidden ones. Finally, the experimental results, taking the parity 3 problem as example, are given. The classification mechanisms of linear feedforward neural network classifiers (FNNC), whose hidden layer performs the Fisher linear transformation of the input patterns, under the supervision of outer-supervised signals are inves- tigated. The 'bottleneck' behaviours in linear FNNCs are observed and analyzed. In addition, the structure stabilities of the linear FNNCs are also discussed. It is pointed out that the key point to break through the 'bottleneck' behaviours for lin- ear FNNCs is to change linear hidden neurons into nonlinear hidden ones. Finally, the experimental results, taking the parity 3 problem as example, are given.
作者 黄德双
出处 《Journal of Computer Science & Technology》 SCIE EI CSCD 1999年第1期34-43,共10页 计算机科学技术学报(英文版)
基金 National Natural Science Foundation of China !No. 69705001.
关键词 feedforward neural network mean square classifiers outer-supervised signal classification feedforward neural network, mean square classifiers, outer-supervised signal, classification
  • 相关文献

参考文献4

  • 1Huang D S,J Intelligent Systems,1998年,8卷,3/4期
  • 2Lu X X,Proc the Sixth Japan-China International Conference on Cmputer Applications,1994年,169页
  • 3Pao Y H,Adaptive Pattern Recognition and Neural Networks,1989年
  • 4Huang D S,IEEE Trans Systems Man Cybernetics B,1988年,28卷,3期,477页

同被引文献36

  • 1黄德双,保铮.STUDY OF RECOGNITION TECHNIQUE OF RADAR TARGET'S ONE-DIMENSIONAL IMAGES BASED ON RADIAL BASIS FUNCTION NETWORK[J].Journal of Electronics(China),1995,12(3):200-210. 被引量:1
  • 2[1]Huang D S. Radial basis probabilistic neural networks: model and application[J]. Interational Journal of Pattern Recognition and Artificial Intelligence, 1999, 13(7):1083-1101.
  • 3[2]Huang D S. Application of generalized redial basis function networks to recognition of radar targets[J]. International Journal of Pattern Recognition and Aritificial Intelligence, 1999, 13(6):945-962.
  • 4[3]Parzen E. On estimation of a probability density function an mode[J]. Ann. Math. Stat.1962, 33:1065-1076.
  • 5[4]Zhao Wen-bo, Huang D S. The structure optimization of radial basis probabilistic neural networks based on genetic algorithms[C]. Proc. IJCNN'02, May,2002:1086-1091.
  • 6[5]Zhao Wen-bo,Huang D S. Appllication of recursive orthogonal least squares algorithm to the structure optimaization of radial basis probabilistic neural networks[C]. Proc. ICSP'02,Aug.2002:1211-1214.
  • 7[6]Huang De-shuang. The pattern recognition system theory based on the neural networks[M]. Beijing: Publishing House of Electronic Industry, 1996,119-137.
  • 8[7]Huang D S. The local minima free condition of feedforward neural networks for outer-supervised learning[J]. IEEE Trans on sysgtems, Man and Cybernetics,1998,28B(3):477-480.
  • 9[10]Bian Zhao-qi,Zhang Xue-gong.Pattern recognition[M]. Beijing:Tshinghua University Press, 2001,230-248.
  • 10[11]Haykin S. Adaptive filter theory[M].3rded, Upper Sadle aiver, NJ: Prentice-Hall, 1996.

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部