摘要
用HyscanⅡ型测氢仪测定了铝熔体在不同温度和保温时间下的氢含量 ,通过对BP人工神经网络的分析和改进 ,采用了结构为 2 4 2 1的BP神经网络模型 ,用所获得的试验数据对其进行训练和测试 ,当BP神经网络经过 3× 10 5次学习后 ,最大训练误差 (MaxTrainingError)和训练均方差 (RMSTrainingError)分别为 0 .5 5 %和 0 .18% ,同时相应的最大测试误差 (MaxTestError)和测试均方差 (RMSTestTraining)分别达到了 0 .72 %和 0 .3 3 % ,对铝熔体中氢的预测达到了很高的精度 ,从而建立了熔炼条件 (温度、保温时间 )
Hydrogen content in molten aluminum at different temperatures and holding times was examined by means of Hyscan Ⅱ hydrogen analyser. The improved BP neural network modeling with 2 4 2 1 structure was adopted for training and testing by experimental data obtained. After learning for 3×10 5 times, max training error and RMS training error of BP neural network are 0.55%and 0.18%, corresponding to 0.72% max test error and 0.33% RMS test training respectively. The prediction precision is so high for the hydrogen content in molten aluminum that the response model between smelting condition (temperature, holding time) and hydrogen content may be established.
出处
《特种铸造及有色合金》
CAS
CSCD
北大核心
2002年第5期1-3,共3页
Special Casting & Nonferrous Alloys
基金
国家自然科学基金资助项目 (50 0 0 71 0 2 8)
关键词
人工神经网络
铝熔体
氢
预测
Hydrogen Content, Neural Network, Molten Aluminum