期刊文献+

一种基于超盒表示的规则提取方法 被引量:2

A Method for Rule Extraction Based on Hyper-Box Representation
下载PDF
导出
摘要 提出一种从训练样本提取基于超盒表示的模糊规则的方法,用于模式分类.这种方法把模式空间划分成模糊超盒,作为模糊规则的前件,规则的后件是相应的类别名称,同时给出每一条模糊规则的置信度.模糊分类规则从训练样本通过学习算法提取.规则提取方法可以分为,对于单个训练模式进行规则前件和后件的局部在线学习,和对于全部训练模式进行循环学习.实验显示规则提取的过程,说明通过这种方法能够获得有效的模式分类规则. In this paper,we discuss a new method for rule extraction based on hyper-box representation.The method is deducted from the MRCC model,used for pattern classification.The method partitions the pattern space with multi-dimensional fuzzy hyper-boxes , and assigns a class label with certainty degree for each variable fuzzy region. These rules are extracted from numerical data through a recursive learning procedure. Experiment shows the efficiency of rule extraction procedure.
出处 《电子学报》 EI CAS CSCD 北大核心 2002年第9期1379-1383,共5页 Acta Electronica Sinica
基金 高等学校博士学科点专项科研基金资助课题(No.98000338)
关键词 超盒表示 模式分类 模糊规则 规则提取 模糊逻辑系统 FLS pattern classification fuzzy rule-based classifier rule generation hyper-box
  • 相关文献

参考文献1

二级参考文献4

  • 1[1]P K Simpson.Fuzzy min-max neural networks-Part 1:classification [J].IEEE Trans.on Neural Net-works,1992,3(5):776-786.
  • 2[2]B Gabrys,A Bargiela.General fuzzy min-max neural network for clustering and classification [J].IEEE Trans.Neural Networks,2000,11(3):769-783.
  • 3[3]S Haykin.Neural Networks:A Comprehensive Foundation,2nd Edition [M].Englewood Cliffs,NJ:Prentice-Hall,1999.
  • 4[4]C Blake,E Keogh,C J Merz.UCI repository of machine learning databases [EB/OL].http://www.ics.uci.edu/~mlearn/MLRepository.html.1998.

共引文献2

同被引文献49

  • 1张雪江,朱向阳,钟秉林,黄仁.基于模拟退火算法的知识获取方法的研究[J].控制与决策,1997,12(4):327-331. 被引量:8
  • 2Ron Sun.Individual Action and Collection Function:From Sociology to Multi-Agent Learning [J].Journal of Cognitive Systems Research,2001,(2):1-3.
  • 3X Z Wang,Y D Wang,X F Xu,et al.A New Approach to Fuzzy Rule Generation:Fuzzy Extension Matrix [J].Fuzzy Sets and Systems,2001,123(3):291-306.
  • 4G Hailu,G Sommer.On Amount and Quality of Bias in Reinforcement Learning [A].Procs of IEEE SMC_99.Vol 2[C].1999.728-733.
  • 5Ya-Ping Lin,Xue-Yong Li.Reinforcement Learning Based on Local State Feature Learning and Policy Adjustment [J].Information Sciences,2003,154(1-2):59-70.
  • 6E Gelenbe,E Seref,Z Xu.Simulation with Learning Agents [J].Procs of the IEEE,2001,89(2):148-157.
  • 7[加]Jiming Liu.多智能体原理与技术[M].北京:清华大学出版社,2003.
  • 8Chin-Teng Lin,Chong-Ping Jou.GA-Based Fuzzy Reinforcement Learning for Control of a Magnetic Bearing System [J].IEEE Trans on Systems,Man and Cybernetics,2000,30(2):276-289.
  • 9J R Clymer.Simulation-Based Engineering of Complex System Using Extend + MFG + OPEMCSS [A].Proc of the 2002 Winter Simulation Conf[C].2002.
  • 10Ken Wen Chong.Multi-Agent Traffic Simulation-Street.Junction & Traffic Light [D].University of Edinburgh,1996.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部