期刊文献+

A Global Existence Theorem for Semilinear Wave Equations in Five Space Dimension

五维空间中半线性波动方程整体解的存在性定理(英文)
下载PDF
导出
摘要 This paper concerns the global existence of solutions to the semi-linear wave equation utt-△u = G(u) in five space dimensions, where G(u) -|u|p with p > 3+17^(1/17). We used the classical iteration method and technique estimates to show that a classical global solution exists for the radially symmetric equations with small and compact supported initial data. 本文研究五维空间中半线性波动方程utt-△u=G(u)整体解的存在性,其中G(u)~|u|p并且p>(3+17~(1/17))/4.利用经典的迭代方法证明了:如果初始值很小并且紧支的,径向对称方程有一个经典整体解.
机构地区 Dept.ofMath Dept.ofMath.
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2002年第3期351-367,共17页 数学研究与评论(英文版)
关键词 global existence semi-linear wave equation. 五维空间 半线性波动方程 整体解 存在性定理
  • 相关文献

参考文献12

  • 1Georgiev, Vladimir; Lindblad, Hans;Sogge, Christopher D. Weighted Strichartz estimates and global existence for semilinearwave equations [J]. Amer. J. Math., 1997, 119(6): 1291-1319.
  • 2GLASSEY R T. Blow-up theorem for nonlinear wave equations [J]. Math. Z., 1973,132:183-203.
  • 3GLASSEY R T. Finite-time blow-up for solutions ofnonlinear wave equations [J].Math. Z.,1981, 177: 323-340.
  • 4GLASSEY R T. Existence in the largefor u = F(u) in two space dimensions [J]. Math.Z.,1981, 178: 233-261.
  • 5JOHN F. Blow-up of noninear wave equations in three space dimensions [J]. Man.Math.,1979, 28: 235-268.
  • 6JOHN F. Blow-up of quasilinear wave equations in three space dimensions [J]. Comm.Pure Appl. Math., 1981, 54: 29-51.
  • 7LINDBALD H, SOGGE C. Long-time existence for small amplitude semilinear waveeqautions [J]. Amer. J. Math., 1996, 118(5): 1047-1135.
  • 8RAMMAHA M A. Finite-time blow-up for nonlinear wave equations in high dimensions[J].Comm. Partial Differential Equations, 1987, 12(6): 677-700.
  • 9SCHAEFFER J. Wave equations with positive nonlinearities [M]. Ph.D. thesis, IndianaUniversity, 1983.
  • 10SCHAEFFER J. The equation □u = |u|p for the critical value ofp [J]. Proc. Roy.Soc.Edinburgh, Ser. A, 1985, 101: 31-44.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部