On Lins, A., W. de Melo and Pugh C.C.'s Conjecture (Part Ⅱ)
关于Lins,A.,W.de Melo和Pugh C.C.的猜想(Ⅱ)(英文)
摘要
In this paper, we give a affirmative answer to Lins.A., W.de Melo and pugh c.c.'s conjecture[1]for F(x) = -F(-x).
在本文中,我们证明了F(x)=-F(x)条件下,Lins,A.,W.de Melo和 PughC.C.的猜想是成立的.
参考文献6
-
1LINS A., W. de Melo, PUGH C C. OnLienard equation [J]. Lect. Notes in Math., 1977, 597:335-357.
-
2ZHANG Zhi-fen, etc., Qualitative Theory of Differential Equation [M]. ScientificPublishers,1985. (in Chinese)
-
3YE Yan-qian. Qualitative Theory of Polynomial Differential Systems [M]. ShanghaiScientific & Technical Publishers, 1995. (in Chinese)
-
4CHEN Xiu-dong. Zero point ofstate function and limit cycle [J]. Ann. of Diff. Equ.,1983,
-
5CHEN Xiu-dong. Properties of characteristic function and existence of linit cyclesof Lienard's equation [J]. China. Ann. of Math., Ser. B., 1983, 4.
-
6CHEN Xiu-dong, SUN Li-hua. On A. Lins, W. de Melo and C. C. Pugh's Conjecture (PartI) [J]. J. of Math. Res. & Expo., 1985, 5(3).
-
1陈秀东,陈勇.Liénard方程至多存在n个极限环的充分条件[J].Journal of Mathematical Research and Exposition,2003,23(2):333-338.
-
2Chen Xiudong,Chen Yong.ON THE CONJECTURE OF A.LINS, W.DE MELO AND C.C.PUGH[J].Annals of Differential Equations,2006,22(2):144-148.
-
3李承治,李伟固.四次Liénard方程在奇异摄动下极限环的唯一性[J].中国科学:数学,2017,47(1):119-134.
-
4刁远安.THE NONEXISTENCE OF LIMIT CYCLES OF SYSTEM[J].Chinese Science Bulletin,1985,30(1).
-
5霉捌壹叁.此情可待成追忆:Jordan Melo系列回顾[J].中国服装(北京),2014(4):24-27.
-
6刘晶晶,史力斌.利用第一性原理方法研究CuXSe_2(X=B,Al,Ga,In,Tl)力学性质[J].原子与分子物理学报,2014,31(4):672-676.
-
7王小林.公式lim〔1+(1/x)〕^(x)x→∞=e的应用探讨[J].数学教学通讯(教师阅读),2012(5):57-58.
-
8潘建瑜.四次Liénard系统极限环的唯一性[J].南京大学学报(数学半年刊),2000,17(2):211-217.
-
9张晶.本命年庆生 JORDAN MELO M4[J].中国服装(北京),2008(18):40-41.
-
10ZHANG QiaoFu,CUI JunZhi.Interior Hlder and gradient estimates for the homogenization of the linear elliptic equations[J].Science China Mathematics,2013,56(8):1575-1584. 被引量:2