期刊文献+

Sensitivity Analysis in Vector Optimization under Benson Proper Efficiency 被引量:1

Benson真有效意义下向量优化的灵敏度分析(英文)
下载PDF
导出
摘要 The behavior of the perturbation map is analyzed quantitatively by using the concept of contingent derivatives for set-valued maps under Benson proper efficiency. Let W(u) = Pmin[G(u),S],y∧∈W(u∧). It is shown that, under some conditions, DW(u∧,y∧) Pmin[DG(u∧,y∧),S] , and under some other conditions, DW(u∧,y∧) Pmin[DG(u∧,y∧),S]. 本文用关于集值映射的Contingent切导数定量地讨论了参数映射G(u)在Ben-son真有效意义下的扰动情况.记W(u)=Pmin[G(u),S],y∧∈W(u∧),则在某些条件下DW(u∧,y∧)(u) Pmin[DG(u∧,y∧)(u)],而在另外一些条件下DW(u∧,y∧)(u) Pmin[DG(u∧,y∧)(u)].
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2002年第3期407-412,共6页 数学研究与评论(英文版)
基金 Supported by the National Natural Science Foundation of China(69972036)
关键词 sensitivity analysis perturbation maps contingent derivatives Benson proper efficiency. Benson真有效意义 向量优化 灵敏度分析
  • 相关文献

参考文献1

二级参考文献3

  • 1D. S. Shi. Sensitivity analysis in convex vector optimization[J] 1993,Journal of Optimization Theory and Applications(1):145~159
  • 2D. S. Shi. Contingent derivative of the perturbation map in multiobjective optimization[J] 1991,Journal of Optimization Theory and Applications(2):385~396
  • 3T. Tanino. Sensitivity analysis in multiobjective optimization[J] 1988,Journal of Optimization Theory and Applications(3):479~499

共引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部