期刊文献+

无界区域上含p-Laplacian的共振问题 被引量:1

Resonance Problems for the p-Laplacian on Unbounded Domains
原文传递
导出
摘要 本文利用变分方法研究如下边值问题的可解性:-△pu=μQ(x)|u|p-2u+f(x,u),u∈D1 0p(Ω),其中Ω是RN中的开集,1<p<N,μ≥0为参变量,函数Q和f可变号. By using the variational method, we discuss the existence of solution of the boundary value problem-△pu=μQ(x)|u|p-2u+f(x,u), u∈D01,p(Ω), where Ω is an open set of RN, 1<p<N,u>0 and both functions Q and f may change sign.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2002年第5期841-846,共6页 Acta Mathematica Sinica:Chinese Series
基金 云南省自然科学基金资助项目
关键词 无界区域 P-LAPLACIAN 共振问题 变分方法 边值问题 p-Laplacian Unbounded domain Variational method
  • 相关文献

参考文献10

  • 1Arcoya D., Orsina L., Landesman-lazer conditions and quasilinear elliptic equations, Nonl. Anal. T.M.A., 1997, 28: 1623-1632.
  • 2Drabek P., Robinsson S. B., Resonance problems for the one dimensional p-laplacian, Proc. Amer. Math. Soc., 2000, 128: 755-756.
  • 3Drabek P., Huang Y. X., Bifurcation problems for the p-laplacian in RN, Trans. Amer. Math. Soc., 1997, 349: 171-188.
  • 4Huang Y. S., Positive solutions of quasilinear elliptic equations, Topol. Meth. Nonl., 1998, 12: 91-107.
  • 5Szulkin A., Willem M., Eigenvalue problems with indefinite weight, Studia. Math., 1999, 135: 191-201.
  • 6Rabinowitz P. H., Minimax Methods in Critical Point Theory with Applications to Differential Equations,CBMS Regional Conf. Ser. in Math. No. 65, Amer. Math. Soc., Providence, R. I., 1986.
  • 7Strume M., Variational Methods; Applications to Nonlinear Partial Differential Equations and HamiltonianSystems, New York: Springer-Verlag, 1990.
  • 8Corvellec J. N., Degiovanni M., Marzocchi M., Deformation properties for continuous functionals and critical point theory, Topol. Meth. Nonl. Anal., 1993, 1: 151-171.
  • 9Ghoussoub N., Duality and Perturbation Methods in Critical Point Theory, London: Cambridge University Press, 1993.
  • 10Szulkin A., Ljusternik-schnirelmann theory on C1-manifolds, Ann. Inst. H. Poincare, Analyse Nonlineaire,1988, 5: 119-139.

同被引文献13

  • 1Smets D. A concentration-compactness lemma with applications to singular eigenalue problems [ J ]. J Funct Anal, 1999,167:463 - 480.
  • 2Le A. Eigenvalue problems for the p-Laplacian [ J ]. Nonlinear Anal,2006,64:1057 - 1099.
  • 3Szulkin A, Willem M. Eigenvalue problems with indefinite weight [ J ]. Studia Math, 1999,135 : 191 - 201.
  • 4Huang Y X. Eigenvalue problems of the p-Laplacian in R^N with indefinite weight[ J ]. Comm Math Univ Carolinae, 1995,36:519 - 527.
  • 5Kufner A, John O, Fueik S. Function Spaces [ M ]. Leyden. Noordhoff, 1977.
  • 6Drabek P. Nonlinear eigenvalue problems for the p-Laplacian in R^N[ J]. Math Nachr, 1995,173:131 -139.
  • 7Yu L S. Nonlinear p-Laplacian problems on unbounded Domains [ J ]. Proc Amer Math Soc, 1992,115 (4) : 1037 - 1045.
  • 8Allegretto W, Huang Y X. Eigenvalues of the indefinite weight p-Laplacian in weighted spaces [ J ]. Funkc Ekvac, 1995,38 : 233 - 242.
  • 9Zeilder E. Nonlinear Functional Analysis and its Applications [ M ]. Vol. 2A. Berlin: Springer-Verlag, 1990.
  • 10Szulkin A. Ljusternik-Schirelman theory on C^1 -manifolds [ J ]. Ann Inst H Poincare Anal Non Lineaire, 1998 (5) :119 - 139.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部