期刊文献+

量子随机Cable方程的白噪声分析方法 被引量:8

A White Noise Approach to Quantum Stochastic Cable Equations
原文传递
导出
摘要 本文讨论了广义算子及其Wick积意义下的非线性量子随机Cable方程.在给出解的存在唯一性定理的基础上,证明了解对初值过程的连续依赖性及其他性质. A nonlinear quantum stochastic Cable equation in terms of generalized operators and their Wick products is investigated. The existence and uniqueness of the solution are established, and the continuous dependence on the initial process and other properties are proved for the solution.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2002年第5期851-862,共12页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(10171035) NWNU-KJCXGC-212资助项目 西北师大青年科研基金资助项目
关键词 量子随机Cable方程 白噪声 Wick积 White noise Quantum stochastic Cable equation Wick product
  • 相关文献

参考文献13

  • 1Applebaum D., Quantum martingale measures and stochastic partial differential equations in Fock space, J. Math. Physics, 1998, 39: 3019-3030.
  • 2Hida T., Kuo H. H., Potthoff J., Strait L., White Noise-An Infinite Dimensional Calculus, Dordrecht: Kluwer, 1993.
  • 3Huang Z. Y., Yan J. A., Introduction to Infinite Dimensional Stochastic Analysis, Dordrecht: Kluwer, 1997.
  • 4Luo S. L., Wick algebra of generalized operators involving quantum white noise, J. Operator Theory, 1997, 38: 367-378.
  • 5Huang Z. Y., Luo S. L., Quantum white noises and free fields, IDAQP, 1998, 1: 69-82.
  • 6Huang Z. Y., Luo S. L., Wick calculus of generalized operators and its applications to quantum stochastic calculus, IDAQP, 1998, I: 455-466.
  • 7Obata N., Wick product of white noise operators and quantum stochastic differential equations, J. Math. Soc. Japan, 1999, 51: 613-641.
  • 8Walsh J., An Introduction to Stochastic Partial Differential Equations, LNM 1180, Springer, 1986, 266-439.
  • 9Holden H., Фksendal B., UbФe J. and Zhang T., Stochastic Partial Differential Equations, Birkhauser, 1996.
  • 10Huang Z. Y., Quantum white noise, Nagoya Math. J., 1993, 129: 23-42.

同被引文献25

引证文献8

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部