期刊文献+

非可加集函数的Lebesgue分解 被引量:1

Lebesgue Decompositions of Non-Additive Set Functions
原文传递
导出
摘要 本文讨论一般的非可加集函数的Lebesgue分解定理,它是经典测度论中相应结果的扩充,同时,也为经典可加测度的Lebessue分解定理提供了另一证明方法. This paper discusses Lebesgue decomposition theorem of more general set functions, which generalizes the corresponding results in classical measure theory. And we also provide a new proof method for Lebesgue decomposition theorem of classical additive measure.
作者 张强 刘克
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2002年第5期899-904,共6页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目 中国博士后基金资助项目 河北大学启动基金资助项目
关键词 非可加集函数 Lebesgue分解 零可加 测度论 Set function Lebesgue decomposition Null (-null) additive
  • 相关文献

参考文献7

  • 1Yan J., Lectures on the Measure Theory, Beijing: Science Press 1998 (in Chinese).
  • 2Pap E., Lebesgue and Saks decompositions of ⊥-decomposable measures, Fuzzy Sets and Systems, 1990, 38: 345-353.
  • 3Weber S., ⊥-decomposable measures and integrals for Archimedean t-conorm, J. Math. Anal. Appl., 1984,101: 114-138.
  • 4Jiang Q., Suzuki H., Lebesgue and Saks decompositions of σ-finite fuzzy measures, Fuzzy Sets and Systems, 1997, 75: 373-385.
  • 5Wang Z., The autocontinuity of set function and the fuzzy integral, J. Math. Anal. Appl., 1984, 99: 195-218.
  • 6Zhang Q., Xu Y., Du W., Lebesgue decomposition theorem for σ-finite signed fuzzy measures, Fuzzy Sets andSystems, 1999, 101(3): 445-451.
  • 7Zhang Q., Further discussion on the Hahn decomposition theorem for signed fuzzy measure, Fuzzy Sets and Systems, 1995, 70(1): 89-95.

同被引文献4

  • 1Halmos P R.Measure Theory[M].New York:Springer,1974.
  • 2Zhang Q.Further Discussion On the Hahn decomposition theorem for signed fuzzy measure[J].Fuzzy Sets ang Systerms,1995,70(1):89 ~95.
  • 3Liu Xuecheng.Hahn decomposition theorem for infinite signed fuzzy measure[J].Fuzzy Sets and Systerms,1993,57:377 ~380.
  • 4Zhang Q.Lebesgue decomposition theorem for finite signed fuzzy measures[J].Fuzzy Sets and Systerms,1999,101 (3):445 ~ 451.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部