期刊文献+

一类非散度型椭圆方程的正则性

A REGULARITY RESULT OF A CLASS OF ELLIPTIC EQUATION IN NON-DIVERGENCE STRUCTURE
下载PDF
导出
摘要 本文得到了一类带奇异低阶项椭圆万程的非负解的Harnack不等式、方程的形式为L0u+biuxi=0,其中L0为一具Holder连续系数的非散度型椭圆算子,|b|2属于Kato类. Harnack's inequality for nonnegative solutions of a class of elliptic equation in non-divergence structure was proved.The form of the equation is: L0u + biuX = 0, where L0 is a second order elliptic operator with Holder continous coefficient, and |b|2 belongs to Kato class.
作者 金永阳
出处 《数学年刊(A辑)》 CSCD 北大核心 2002年第4期513-520,共8页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.19971076) 933(No.G1999075105)资助的项目.
关键词 非散度型椭圆方程 正则性 非散度型椭圆算子 HARNACK不等式 Kato类 Nondivergence type elliptic operator, Harnack's Inequality, Kato class
  • 相关文献

参考文献10

  • 1Aizenman, M. & Simon, B., Brownian motion and Harnack's inequality for Schrodinger operators [J], Comm. Pure Appl. Math., 35(1982), 209-271.
  • 2Chiarenza, F., Fabes, E. & Garofalo, N., Harnack's inequality for Schrodinger operatorsand the continuity of solutions [J], Proc. Amer. Math. Soc., 98(1986), 415-425.
  • 3Fabes, E. & Strook, D., The Lp integerability of Greens function and fundamental solutions of elliptic and parabolic equations [J], Duke. Math. J., 51(1984), 997-1016.
  • 4Gilbarg, D. & Trudinger, N., Elliptic partial differential equation of second order [M],2nd edition, Springer-Verlag, Berlin, 1983.
  • 5Hinz, A. M. & Kalf, H., Subsolution estimates and Harnack's inequality for Schrodingeroperators [J], J. Reine. Angew. Math., 404(1990), 118 134.
  • 6Hueber, H. & Sieveking, M., Uniform bounds for quotients of Green functions on C1,1domains [J], Ann Inst. Fourier (Grenoble), 32(1982), 105-117.
  • 7Kato, T., Schrodinger operators with singular potentials [J], Israel. J. Math., 13(1973),135-148.
  • 8Kenig, C. E., Dirichlet form [J], Lecture Notes in Mathematics, 1563(1992), 83-128.
  • 9Mohammed, Harnack's principle for some nondivergence structure elliptic operators [J], Comm. P.D.E., 23(1998), 287-306.
  • 10Simader, C., An elementary proof of Harnack's inequality for Schrodinger operatorsand related topic [J], Math. Z., 203(1990), 129-152.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部