期刊文献+

对于大额索赔的平衡更新模型的破产概率 被引量:11

RUIN PROBABILITIES FOR LARGE CLAIMS IN EQUILIBRIUM RENEWAL MODEL
下载PDF
导出
摘要 本文研究平衡更新风险模型的破产概率ψ(x),这里x为保险公司初始的资本金.在假定索赔额服从重尾分布的条件下,给出了当x→∞时;ψ(x)的尾等价关系,所得结果与经典的Cramer-Lundbeng模型下的结论完全一致. This paper investigates ruin probabilities ψ(x) in the equilibrium renewal risk model, where x is the initial capital of an insurance company. Under the assumption that the claim size is heavy-tailed, we aim at a tail equivalence relationship of ψ(x) as x→∞and obtain the desired result in the paper, which is surprisingly the same as that in the Cramer-Lundberg model.
出处 《数学年刊(A辑)》 CSCD 北大核心 2002年第4期531-536,共6页 Chinese Annals of Mathematics
关键词 大额索赔 平衡更新模型 破产概率 重尾分布 阶梯高度 风险模型 更新过程 保险 Heavy-tailed distributions, Ladder height, Ruin probabilities, Risk model, Renewal process
  • 相关文献

参考文献1

二级参考文献5

  • 1C. C. Heyde.A contribution to the theory of large deviations for sums of independent random variables[J].Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete.1967(5)
  • 2Nagaev,A. V.Integral limit theorems for large deviations when Cramer’s condition is not fulfilled I, II, Theory Prob[].Ap-pl.1969
  • 3Nagaev,S. V.Large deviations of sums of independent random variables, Ann[].Probe.1979
  • 4Nagaev,S. V.Large deviations for sums of independent random variables, in Sixth Prague Conf[].on Information Theory Random Processes and Statistical Decision Functions Prague: Academic.1973
  • 5Heyde,C. C.A contribution to the theory of large deviations for sums of independent random variables, Z[].Wahrschein-lichkeitsth.1967

共引文献26

同被引文献58

引证文献11

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部