期刊文献+

数值求解迭代Tikhonov正则化方法的一点注记 被引量:3

A NOTE ON NUMERICAL SOLUTION OF ITERATED TIKHONOV REGULARIZATION
原文传递
导出
摘要 (?)1.引 言 我们考虑如下形式的不适定算子方程 Af=g,(1)其中 A:F→G为一个有界线性算子,F,G为Hilbert空间.通常右端项g为“观测数据”,因而不可避免地带有一定的误差δ,即我们所得到的数据为gδ,满足:||g—gδ||≤δ.有时即使A-1:Range(A)→F存在,但也未必连续,因而数值求解相当不稳定[2,3].消除不稳定性的一个自然的方式是用一簇接近适定问题的模型去逼近原问题,比如说最著名的Tikhonov正则化方法,用如下适定的算于方程 (A*A+αI)fα=A*gδ(2) In practical applications we often encounter ill-posed operator equations. So far, explicit methods or direct methods and implicit methods or indirect methods have been well developed for solving such problems. This paper deals with the numerical implementation of such problems and proposes a efficient algorithm for implementing implicit methods.
作者 王彦飞
出处 《数值计算与计算机应用》 CSCD 北大核心 2002年第3期237-240,共4页 Journal on Numerical Methods and Computer Applications
基金 国家自然科学基金资助项目19731010 中国科学院知识创新工程资助项目
关键词 迭代 TIKHONOV正则化方法 数值解 矩阵 ill-posed problems, efficient implementation
  • 相关文献

参考文献10

  • 1[1]Brill M and Schock E, Iterative Solution of Ill-Posed Problems-a survey, in "Model Optimization in Exploration Geophysics," (Vogel A Ed.), Vieweg, Braunschweig, (1987), 13-38.
  • 2[2]Engl H W, Hanke M and Neubauer, Regularization of Inverse Problems, Dordrecht: Kluwer 1996.
  • 3[3]Fakeev A G, A Class of Iterative Processes for Solving Degenerate Systems of Linear Algebraic Equations, USSR. Comp. Math. Math. Phys. 21: 3 (1981), 15-22.
  • 4[4]Groetsch C W, The Theory of Tikhonov Regularization for Fredholm Equations of The First Kind(Boston, MA: Pitman) 1984.
  • 5[5]Hofmann B, Regularization for Applied Inverse and Ill-posed Problems, Teubner, Leipzig 1986.
  • 6[6]King J T and Chillingworth, Approximation of Generalized Inverses by Iterated Regularization,Numer. Funct.Anal. Optim. 1 (1979), 499-513.
  • 7[7]Kryanev A V, An Iterative Method for Solving Incorrectly Posed Problem, USSR. Comp. Math.Math. Phys. 14: 1 (1974), 24-33.
  • 8[8]Lardy L J, A Series Representation for the Generalized Inverse of a Closed Linear Operator, Atti Accad. Naz. Lincei Rend. Cl.Sci. Fis. Mat. Natur., ser. Ⅷ, 58 (1975), 152-157.
  • 9[9]Gordonova V I and Morozov V A, Numerical Algorithms for Parameter Choice in the Regularization Method, Zh. Vychisl. Mat. Mat.Fiz. 13 (1973), 539-545.
  • 10[10]Tikhonov A N and Arsenin V Y, Solutions of Ill-Posed Problems, New York: Wiley 1977.

同被引文献11

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部