摘要
对非线性散度模型在 Euclid空间建立几何结构 .在此基础上 ,研究了均值漂移模型的曲率度量 .从而导出相应 Cook距离 ,似然距离等诊断统计量的二阶近似公式 .
A geometric framework is proposed for nonlinear reproductive dispersion models in Euclidean inner product space.By using this geometric framework the curvature measure about the mean shift outlier models is studied.The Cook distance and the likelihood distance are obtained in terms of curvature.$$$$
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
2002年第3期257-263,共7页
Applied Mathematics A Journal of Chinese Universities(Ser.A)