摘要
对于有向图代数的研究通常是假定图是无收点的 ,对于一个有收点 (没有任何边以其为起点的顶点 )的有向图E往往要把它处理成无收点的图F ,而且使得C (E)与C (F)间有良好的关系 .据此给出一种方法 ,并且证明了C (E)是C (F)的完全C -子代数 ,随之给出几个比较有趣的推论 .
We study the algebras of directed graphs without sinks(vertice emiting no edges).In general,for a directed graph E with sinks,it's always changed into a directed graph F without sinks,and such a way should make a good relation between C*(E) and C*(F),and several interesting corollaries will be given as well.
出处
《同济大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2002年第9期1152-1154,共3页
Journal of Tongji University:Natural Science
基金
国家自然科学基金资助项目 (2 0 175 0 13 )