期刊文献+

一种自适应蚁群算法及其应用 被引量:1

Adaptive Colony Algorithm and Its Application
下载PDF
导出
摘要 蚁群算法是一种具有许多优良特性的新型算法,该算法具有较强的发现较好解的能力,但同时也存在容易出现停滞现象,收敛速度慢等缺点。在介绍基本蚁群算法的基础上,针对蚁群算法的不足,提出了一种自适应蚁群算法。该算法对蚁群算法中的信息素在更新过程中进行自适应调整。实验结果表明,该算法比传统的蚁群算法具有更好的搜索全局最优解的能力,并具有更好的收敛性。 Ant colony algorithm is a novel algorithm with many promising characters.Preliminary study has shown that the algorithm has great ability of searching better solution,but at the same time there are some disadvantages such as tending to go into stagnation behavior and needing longer computing time.This paper firstly gives an introduction of the basic ant colony algorithm,and then advances an adaptive ant colony algorithm to overcome the shortages of the basic ant algorithm.The new algorithm adjusts the message units of the basic algorithm in the course of updating.The text results indicate that this algorithm has more excellent ability in searching the whole best solution and searching efficiency than the basic algorithm.
作者 杨德芹
出处 《软件导刊》 2007年第11期156-158,共3页 Software Guide
关键词 蚁群算法 自适应 信息素 优化 ant colony algorithm adaptive message.unit optimization
  • 相关文献

参考文献6

二级参考文献41

  • 1Colorni A, Dorigo M, Maniezzo V, et al. Distributed optimization by ant colonies [ A]. Proceedings of ECAL91 ( European Conference on Artificial Life) [ C ]. Paris, France : 1991.134 - 142.
  • 2Dorigo M, Maniezzo V, Colomi A. The ant system:optimization by a colony of cooperating agents [ J]. IEEE Transactions on Systems, Man, and Cybernetics - Part B, 1996, 26( 1 ) : 29-41.
  • 3Verbeeck K, Nowe A. Colonies of learning automata [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 2002,32(6) : 772 -780.
  • 4Montgomery J, Randall M. Anti-pheromone as a tool for better exploration of search space [A]. Proceedings of Third International Workshop ANTS [C]. Brussels, Belgium:2002. 100 - 110.
  • 5Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behaviour [J]. Nature, 2000, 406(6) :39-42.
  • 6Dorigo M, Gambardella L M. Solving symmetric and asym-metric TSPs by ant colonies [ A ]. Proceedings of the IEEE Conference on Evolutionary Computation [ C ]. Nagoya, Japan : 1996. 622-627.
  • 7Thomas S, Holger H H. MAX - MIN ant system [J]. Future Generation Computer Systems, 2000,16 ( 8 ) : 889 - 914.
  • 8Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behaviour [J]. Nature, 2000, 406(6) :39 -42.
  • 9Dorigo M, Gambardella L M. Solving symmetric and asym-metric TSPs by ant colonies [ A]. Proceedings of the IEEE Conference on Evolutionary Computation [ C ]. Nagoya, Japan: 1996. 622 -627.
  • 10Thomas S, Holger H H. MAX- MIN ant system [ J]. Future Generation Computer Systems, 2000,16 (8): 889 - 914.

共引文献525

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部