期刊文献+

基于语义的疾病相关蛋白质知识抽取 被引量:2

Semantic output output-based disease-protein knowledge extraction
原文传递
导出
摘要 随着人类基因组学研究和高通量技术的发展,涉及蛋白质知识以及相关疾病、药物的医学文献呈指数增长。利用文本挖掘技术从大量的生物医学文本中发现和抽取有价值的、新颖的蛋白质知识已经成为可能。基于SemRep得到的特定疾病的M EDLINE文献的语义输出,通过显著信息提取算法对该语义输出进行打分排序,抽取得到与特定疾病相关的蛋白质以及蛋白质和药物之间的联系。之后与KEGG数据库中列出的该疾病相关的蛋白质、基因进行比较。实验结果对理解疾病的病因、蛋白质功能预测以及药物辅助设计都有重要的研究意义。 With the rapid development of genomics and high-throughput technologies,large amount of biomedical literatures about genes and proteins appear. M eanwhile,the use of text mining technology discovery and excavation of new,valuable knowledge of protein from the mass of medical texts has become possible. This paper presents a system which extracts the relations between proteins and certain diseases from biomedical literature based on semantic output generated by SemRep,and then extracts novel,valuable protein knowledge. The system summarizes the salient relations by the salient extraction algorithm using the specific subject M EDLINE corpus. Subsequently,the results extracted by the system are compared with data from KEGG database. Implementation of the system has important significance for understanding the major causes of many diseases,protein function prediction and drug-aided design.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2016年第3期104-110,共7页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(61070098 61272373 61340020) 新世纪优秀人才支撑计划项目(NCET-13-0084) 中央高校基本科研业务费专项资金资助项目(DUT13JB09 DUT14YQ213)
关键词 语义关系 信息抽取 SemRep KEGG semantic relation information extraction SemRep KEGG
  • 相关文献

参考文献1

二级参考文献22

  • 1Steinberger J, Jezek K. Text summarization: an old challenge and new approaches[J]. Foundations of Computational, Intelligence, 2009, 6: 127-149.
  • 2Luhn H E The automatic creation of literature abstracts[J] IBM Journal of Research Development, 1958, 2(2): 159- 165.
  • 3I Edmundson H E New methods in automatic extracting[J]. I Journal of the ACM, 1969, 16(2): 23-42.
  • 4Erkan G, Radev D R. LexRank: graph-based lexical centrality as salience in text summarization[J]. Journal ofArtificial Intelligence Research, 2004, 22(1): 457-479.
  • 5Yeufel S, Moens M. Sentence extraction as a classifica- tion task[C]//Proceedings of Annual Meeting of the Association for Computational Linguistics and Conference ofthe European Chapter of the Association for Computational Linguistics (ACL/EACL), Madrid, Spain, 1997. Stroudsburg, PA, USA: Association for Computational Linguistics, 1997: 58-65.
  • 6Radev D, Allison T, Goldensohn S B, et al. MEAD-a platform for multidocument multilingual text summariza-tion[C]//Proceedings of the 4th International Conference on Language Resources and Evaluation, 2004. Lisbon, Portugal: European Language Resources Association, 2004 699-702.
  • 7Ling gene ings Xu, Jiang Jin, He Xin, et al. Automatically generating summaries from biomedical literature[C]//Proceedof Pacific Symposium on Biocomputing. HawaiiUSA: International Society for Computational Biology, 2006: 40-51.
  • 8Ling Xu, Jiang Jin, He Xin, et al. Generating semi-structured gene summaries from biomedical literature[J]. Information Processing and Management, 2007, 43(6): 1777-1791.
  • 9Reeve L H, Han H, Brooks A D. The use of domain-specific concepts in biomedical text summarization[J]. Information Processing & Management, 2007, 43 (6): 1765- 1776.
  • 10Yoo I, Hu Xiaohua, Song I. A coherent biomedical literature clustering and summarization approach through ontology-enriched graphical representations[C]//Proceedings of the 8th International Conference on Data Warehousing and Knowledge Discovery, Krakow, Poland, 2006. [S.1.]: Springer, 2006: 374-383.

共引文献6

同被引文献9

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部