摘要
给出了k-连通图生成树和完美匹配上的可收缩边数目,得到如下结果:任意断片的阶都大于「k/2■的k-连通图中生成树上至少有4条可收缩边;若该k-连通图中存在完美匹配,则完美匹配上至少有「k/2■+1条可收缩边。
The numbers of contractible edges of a spanning tree and a perfect matching in k-connected graphs are given.The conclusions are that if every fragment of a k-connected graph has an order more than「k/2■,then there exist at least four contractible edges on the spanning tree of this graph. Furthermore,if this graph has a perfect matching,then there exist at least 「k/2■ + 1 contractible edges on the perfect matching.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2016年第8期29-34,共6页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(61432010)
关键词
K-连通图
可收缩边
生成树
完美匹配
k-connect graph
contractible edge
spanning tree
perfect matching