期刊文献+

基于超松弛迭代的MHSS加速方法

On successive-overrelaxation acceleration of MHSS iterations
原文传递
导出
摘要 修正的Hermite/反Hermite分裂(MHSS)迭代方法是一类求解大型稀疏复对称线性代数方程组的无条件收敛的迭代算法。基于超松弛(SOR)迭代技术,本文提出一类MHSS加速方法,分析了MHSS加速方法的收敛性质,给出了MHSS加速方法中参数ω的选取办法。数值实验证明了新方法能够有效地提高MHSS求解线性代数方程组的求解效率。 Modified Hermitian and skew-Hermitian splitting( MHSS) iteration method is an unconditionally convergent method for solving large sparse complex symmetric linear systems. Based on successive-overrelaxation technique,a class of accelerated MHSS iterative method is presented,then convergence theorems is established for the new method.Moreover,a selection method of the parameter ω is given. Numerical experiment demonstrate that new method can effectively improve the efficiency of MHSS iterative method for solving linear algebraic equations.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2016年第8期61-65,共5页 Journal of Shandong University(Natural Science)
基金 吉林省教育厅"十三五"科学技术研究规划项目(2016210) 吉林省教育厅项目(2015214) 四平市科技发展计划项目(2015052)
关键词 对称/反对称分裂 收敛分析 复对称线性系统 Hermitian/skew-Hermitian Splitting convergence analysis complex symmetric linear systems
  • 相关文献

参考文献2

二级参考文献28

  • 1BAI Zhongzhi, GOLUB G H, NG M K. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definitelinear systems [ J ]. SIAM Journal on Matrix Analysis and Applications, 2003, 24 ( 3 ) : 603 4526.
  • 2BAI Zhongzhi, GOLUB G H, LI Chikwong. Convergence properties of preconditioned Hermitian and skew-Herrnitian splitting methods for non-Hermitian positive semidefinite matrices [ J]. Mathematics of Computation, 2007, 76 (257) :287-298.
  • 3BAI Zhongzhi, GOLUB G H, PAN Jianyu. Preconditioned hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems [ J]. Numerische Mathematik, 2004, 98 (1) :1-32.
  • 4BAI Zhongzhi, GOLUB G H, NG M K. On successive overrelaxation acceleration of the Hermitian and skew-Hermitian split- ting iterations[ J]. Numerical Linear Algebra with Applications, 2007, 14(4) :319-335.
  • 5CHEN Min, TEMAM R. The incremental unknown method I [ J ]. Applied Mathematics Letters, 1991, 4 (3) :73-76.
  • 6CHEN Min, TEMAM R. The incremental unknown method IIE J]. Applied Mathematics Letters, 1991, 4 (3) :77-80.
  • 7CHEN Min, TEMAM R. Incremental unknowns for solving partial differential equationsE J]. Numerische Mathematik, 1991, 59(3 ) :255-271.
  • 8CHEN Min, TEMAM R. Incremental unknowns in finite differences : condition number of the matrix[ J ]. SIAM Journal on Matrix Analysis and Applications, 1993, 14 ( 2 ) : 432-455.
  • 9WU Yujiang, WANG Yang, ZENG Minli, et al. Implementation of modified Marder-Weitzner method for solving nonlinear eigenvalue problems [ J ]. Journal ofComputational and Applied Mathematics, 2009, 226 (1) :166-176.
  • 10BENZI M. Preconditioning techniques for large linear systems: a survey [ J ]. Journal of Computational Physics, 2002, 182 (2) :418-477.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部