摘要
修正的Hermite/反Hermite分裂(MHSS)迭代方法是一类求解大型稀疏复对称线性代数方程组的无条件收敛的迭代算法。基于超松弛(SOR)迭代技术,本文提出一类MHSS加速方法,分析了MHSS加速方法的收敛性质,给出了MHSS加速方法中参数ω的选取办法。数值实验证明了新方法能够有效地提高MHSS求解线性代数方程组的求解效率。
Modified Hermitian and skew-Hermitian splitting( MHSS) iteration method is an unconditionally convergent method for solving large sparse complex symmetric linear systems. Based on successive-overrelaxation technique,a class of accelerated MHSS iterative method is presented,then convergence theorems is established for the new method.Moreover,a selection method of the parameter ω is given. Numerical experiment demonstrate that new method can effectively improve the efficiency of MHSS iterative method for solving linear algebraic equations.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2016年第8期61-65,共5页
Journal of Shandong University(Natural Science)
基金
吉林省教育厅"十三五"科学技术研究规划项目(2016210)
吉林省教育厅项目(2015214)
四平市科技发展计划项目(2015052)
关键词
对称/反对称分裂
收敛分析
复对称线性系统
Hermitian/skew-Hermitian Splitting
convergence analysis
complex symmetric linear systems