期刊文献+

基于贝叶斯方法的鲁棒语音切分 被引量:2

Bayesian Approach to Robust Speech Segmentation
下载PDF
导出
摘要 在基于隐马尔科夫模型的语音切分基础上 ,融合了不受噪声干扰的先验切分模型 ,提出了基于贝叶斯方法的语音切分方法。在贝叶斯切分方法的框架内 ,作者首先对语音序列进行了变换 ,将由切分点构成的序列变为由音节长度构成的序列。然后 ,假设音节长度序列符合一阶马尔科夫过程 ,经过归一化处理后 ,求出了切分的先验概率公式 ,得到了贝叶斯方法的切分模型。在噪声环境下的实验证明 ,由于切分模型独立于噪声 ,对在噪声环境下声学模型的失配提供了很好的补偿 ,使得语音切分的鲁棒性大大增加。 A large quantities of phonetically segmented speech is necessary in speech recognition and speech synthesis. Based on HMM speech segmentation, this paper presents a Bayesian approach to robust speech segmentation. By hidden Markov model, it combined with a prior segmentation model which is independent to noise feature as the compensation for the mismatch of acoustic model to enhance the robust performance. Experiment shows the validity of Bayesian speech segmentation.
出处 《数据采集与处理》 CSCD 2002年第3期260-264,共5页 Journal of Data Acquisition and Processing
关键词 贝叶斯方法 鲁棒性 语音切分 切分模型 语音识别 语音合成 语音信号处理 robustness speech segmentation Bayesian segmentation model
  • 相关文献

参考文献8

  • 1[1]Sevendsen T, Soong F K. On the automatic segmentation of speech signals[C]. In: Proc ICASSP′87 (Vol.1, Dallas, Texas), 1987.77~80
  • 2[2]Mak M W, Allen W G. Spectral transitivity functions for speech segmentation in noise[J]. Acoustic Letters, 1993,16(10):228~234
  • 3[3]Rabiner L R. A tutorial on hidden Markov models and selected applications in speech recognition[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989,77(2):267~295
  • 4[4]Leung H, Zue V. A procedure for automatic alignment of phonetic transcriptions with continuous speech[C]. In: Proc ICASSP′84 (San Diego, California), 1984.271~274
  • 5[5]van Hernert J. Automatic segmentation of speech[J]. IEEE Trans on Signal Processing, 1991,39(4):1008~1012
  • 6[6]Brugnara F,Falavigna D,Omologo M.Automatic segmentation and labeling of speech based on hidden Markov models[J]. Speech Communication, 1993,12(4):357~370
  • 7[7]Young S J. HTK: hidden Markov model toolkit V1.4[M]. Engineering Department of Cambridge University Cambridge, England,1992
  • 8[8]Varga A, Steeneken H. Assessment for automaticspeech recognition: II.NOISEX-92: A database and an experiment to study the effect of additive noise on speech recognition system[J]. Speech Communication, 1993, 12:247~251

同被引文献28

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部