期刊文献+

两个运动障碍疾病中心关于深部脑刺激治疗失败的回顾性分析 被引量:1

Management of referred deep brain stimulation failures: A retrospective analysis from 2 Movement Disorders Centers
下载PDF
导出
摘要 Background: Since the Food and Drug Administration approved DBS, there has been a surge in the number of centers providing the procedure. There is currently no consensus regarding appropriate screening procedures, necessary training of individuals providing the therapy, the need for an interdisciplinary team, or guidelines for the management of complications. An increasing number of patients come to experienced DBS centers after unsatisfactory results from DBS surgery. An attempt is made herein to evaluate the reasons for DBS failure in a series of such patients and to make recommendations to improve overall DBS outcomes. Abstract:Objective: To improve outcomes of deep brain stimulation (DBS) surgery by analyzing a series of patients who had suboptimal results from DBS. Methods: Forty-one consecutive patients complaining of suboptimal results from DBS surgery came to the University of Florida Movement Disorders Center, or to Beth Israel Movement Disorders Center, over a 24-month period. All patients had undergone implantation of DBS devices at outside medical centers. Each patient was evaluated by a movement disorders neurologist, and the complete medical record was reviewed. The DBS device for each patient was interrogated for adverse effects and programmed for maximal benefit. Postoperative imaging studies were evaluated whenever possible. Results: The average age of patients was 63.4 years (range, 49-84 years). The indication for surgery (by record review) included 9 patients with essential tremor, 31 with Parkinson disease, and 1 with dystonia. The diagnoses after referral examination included 5 with essential tremor, 26 with Parkinson disease, 3 with Parkinson disease and dementia, 1 with Parkinson disease and essential tremor, 1 with corticobasal degeneration, 1 with dystonia, 2 with multiple system atrophy, 1 with progressive supranuclear palsy, and 1 with myoclonus. Issues related to inadequate preoperative screening: Thirty (73%) of 41 patients saw a movement disorders specialist prior to DBS implantation. Fourteen (34%) patients had neuropsychological testing, 4 (10%) did not have testing, and in 23 cases (56%), it could not be determined whether or not they were tested. Five (12%) of 41 patients had an inadequate medication trial, and 5 patients (12%) had significant cognitive dysfunction prior to their DBS implantation. Surgical and device-related complications: Nineteen (46%) of 41 patients had suboptimally placed electrodes. Seven electrodes (17%) were replaced with improvement. Three patients’devices had failed due to end of battery life, 2 had infections, and 1 had a fractured lead. Programming and medication adjustments: Seven (17%) of 41 patients had no or poor access to programming. Two patients (5%) moved, and 2 physicians (5%) moved, creating issues with access to care. Eight patients (20%) required local follow-up (they flew to remote centers to have the surgery performed). Fifteen patients (37%) were inadequately programmed and improved significantly with reprogramming. Six patients (15%) experienced partial improvement with reprogramming, and 21 patients (51%) failed to improve despite extensive reprogramming. Thirty patients (73%) benefited from medication changes, 4 (10%) had antidepressants added to their regimens, and 1 (2%) had donepezil hydrochloride added. One patient’s carbidopa/levodopa (2%) was restarted after complete discontinuation. Outcomes: With the various postoperative interventions described, 21 (51%) of 41 patients had good outcomes, 6 (15%) had modest clinical improvement, and 14 (34%) did not improve. Conclusions: With appropriate intervention, 51%of patients who complained of “failed”DBS procedures ultimately had good outcomes. Thirty-four percent of these patients had persistently poor outcomes despite maximal intervention. This case series provides important insights into reasons for “DBS failure”and proposes strategies to manage patients with DBS more effectively. Background: Since the Food and Drug Administration approved DBS, there has been a surge in the number of centers providing the procedure. There is currently no consensus regarding appropriate screening procedures, necessary training of individuals providing the therapy, the need for an interdisciplinary team, or guidelines for the management of complications. An increasing number of patients come to experienced DBS centers after unsatisfactory results from DBS surgery. An attempt is made herein to evaluate the reasons for DBS failure in a series of such patients and to make recommendations to improve overall DBS outcomes. Abstract:Objective: To improve outcomes of deep brain stimulation (DBS) surgery by analyzing a series of patients who had suboptimal results from DBS. Methods: Forty-one consecutive patients complaining of suboptimal results from DBS surgery came to the University of Florida Movement Disorders Center, or to Beth Israel Movement Disorders Center, over a 24-month period. All patients had undergone implantation of DBS devices at outside medical centers. Each patient was evaluated by a movement disorders neurologist, and the complete medical record was reviewed. The DBS device for each patient was interrogated for adverse effects and programmed for maximal benefit. Postoperative imaging studies were evaluated whenever possible. Results: The average age of patients was 63.4 years (range, 49-84 years). The indication for surgery (by record review) included 9 patients with essential tremor, 31 with Parkinson disease, and 1 with dystonia. The diagnoses after referral examination included 5 with essential tremor, 26 with Parkinson disease, 3 with Parkinson disease and dementia, 1 with Parkinson disease and essential tremor, 1 with corticobasal degeneration, 1 with dystonia, 2 with multiple system atrophy, 1 with progressive supranuclear palsy, and 1 with myoclonus. Issues related to inadequate preoperative screening: Thirty (73%) of 41 patients saw a movement disorders specialist prior to DBS implantation. Fourteen (34%) patients had neuropsychological testing, 4 (10%) did not have testing, and in 23 cases (56%), it could not be determined whether or not they were tested. Five (12%) of 41 patients had an inadequate medication trial, and 5 patients (12%) had significant cognitive dysfunction prior to their DBS implantation. Surgical and device-related complications: Nineteen (46%) of 41 patients had suboptimally placed electrodes. Seven electrodes (17%) were replaced with improvement. Three patients'devices had failed due to end of battery life, 2 had infections, and 1 had a fractured lead. Programming and medication adjustments: Seven (17%) of 41 patients had no or poor access to programming. Two patients (5%) moved, and 2 physicians (5%) moved, creating issues with access to care. Eight patients (20%) required local follow-up (they flew to remote centers to have the surgery performed). Fifteen patients (37%) were inadequately programmed and improved significantly with reprogramming. Six patients (15%) experienced partial improvement with reprogramming, and 21 patients (51%) failed to improve despite extensive reprogramming. Thirty patients (73%) benefited from medication changes, 4 (10%) had antidepressants added to their regimens, and 1 (2%) had donepezil hydrochloride added. One patient's carbidopa/levodopa (2%) was restarted after complete discontinuation. Outcomes: With the various postoperative interventions described, 21 (51%) of 41 patients had good outcomes, 6 (15%) had modest clinical improvement, and 14 (34%) did not improve. Conclusions: With appropriate intervention, 51%of patients who complained of “failed”DBS procedures ultimately had good outcomes. Thirty-four percent of these patients had persistently poor outcomes despite maximal intervention. This case series provides important insights into reasons for “DBS failure”and proposes strategies to manage patients with DBS more effectively.
出处 《世界核心医学期刊文摘(神经病学分册)》 2005年第12期11-13,共3页 Digest of the World Core Medical Journals:Clinical Neurology
  • 相关文献

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部