期刊文献+

几何分布的一个统计特征的注记

SOME REMARKS ON THE “A NEW STATISTICAL CHARACTERIZATION OF GEOMETRIC DISTRIBUTIONS”
下载PDF
导出
摘要 本文证明了如下命题(1)若存在k:2<k≤n,使X(k)-X(1)同{X(1)=1}及{X(1)=2}独立,则X1服从几何分布.(2)若存在k:2<k≤n,使X(k)-X(1)同{X(1)=1}及{X(1)=3}独立,则X1服从几何分布.(3)若存在k:2<k≤n,使X(k)-X(1)同{X(1)=2}及{X(1)=3}独立,则X1服从几何分布.(4)若存在k:2<k≤n,使X(k)-X(1)同{X(1)=1}及{X(1)=4}独立,则X1服从几何分布. Abstract The following conclusion has been demonstrated in “(1)If there exists a k:2<k≤n, such that X (k) -X (1) is independent of the event {X (1) =1} and {X (1) =2} ,then X 1 is geometric.”;“(2)If there exists a k:2<k≤n ,such that X (k) -X (1) is independent of the event {X (1) =1} and { X (1) =3} ,then X 1 is geometric.”;“(3)If there exists a k:2<k≤n ,such that X (k) -X (1) is independent of the event {X (1) =2 } and {X (1) =3} ,then X 1 is geometric.”;“(4)If there exists a k:2<k≤n ,such that X (k) -X (1) is independent of the event {X (1) =1} and {X (1) =4} ,then X 1 is geometric.”
出处 《数理统计与应用概率》 1998年第3期35-46,共12页
  • 相关文献

参考文献1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部