改进粒子群优化算法在实时电力调度中的研究与应用
摘要
针对传统粒子群算法收敛精度不高、易陷入局部最优的缺点,文中提出了一种改进的粒子群优化算法,并将其用于优化实时电力调度问题。对IEEE-14节点系统的计算结果表明:与GA、PSO算法相比,新算法不仅避免了惯性因子权重调整的困难,而且较好地协调了算法的局部与全局搜索能力,从而实现经济因素、污气排放与电力调度之间的平衡。
出处
《长沙民政职业技术学院学报》
2012年第A04期178-181,共4页
Journal of Changsha Social Work College
参考文献10
-
1J.Kennedy,R.Eberhart. Particle swarm optimization[A].Perth,Australia,1995.1942-1948.
-
2Chao-Ming Huang,Fu-Lu Wang. An RBF Network With OLS and EPSO Algorithms for Real-Time Power Dispatch[J].IEEE Transactions on Power Systems,2007,(01).
-
3A.J.Wood,B.F.Wollenberg. Power Generation Operation and Control[M].New York:wiley,1996.
-
4J. S. Heo,K. Y. Lee,R. Garduno-Ramirez. Multiobjective control of power plans using particle swarm optimization technique[J].IEEE Transactions on Energy Conversion,2006,(02):552-561.
-
5R.C.Eberhart,Y.Shi. Comparing Inertia Weights and Costric-tion Factors in Particle Swarm Optimization[A].
-
6J. B. Park,K. S. Lee,J. R. Shin,K.Y.Lee. A particle swarm optimization for economic dispatch with nonsmooth cost functions[J].IEEE Transactions on Power Systems,2005,(01):34-42.
-
7XIAO Hong-feng,TAN Guan-zheng. A novel particle swarm opti-mizer without velocity:Simplex-PSO[J].Journal of Central South University of Technology,2010,(17):349-356.
-
8D. N. Jeyakumar,T. Jayabarathi,T. Raghunathan. Particle swarm optimization for various types of economic dispatch problems[J].International Journal of Electrical Power & Energy Systems,2006,(01):36-42.
-
9陈民铀,张聪誉,罗辞勇.基于自适应进化粒子群算法的多目标优化方法[J].系统仿真学报,2009,21(22):7061-7065. 被引量:9
-
10秦洪德,石丽丽.一种新型的被动启发式粒子群优化算法[J].哈尔滨工程大学学报,2010,31(10):1298-1302. 被引量:8
二级参考文献32
-
1COELLO CA, PULIDO GT, LECHUGA MS. Handling Multiple Objectives with Particle Swarm Optimization [J]. IEEE Transaction Evolutionary Computation (S1089-778X), 2004, 8(3): 256-279.
-
2SHI YH, EBERHART R. A Modified Particle Swarm Optimize [C]// Proc IEEE World Congress on Computation Intelligence, Piscataway, NJ, USA, 1998. USA, IEEE, 1998: 69-73.
-
3SHI Y, EBERHART R. Empirical Study of Particle Swarm Optimization [C]// Proceedings of the 1999 congress on Evolutionary Computation. Piscataway, USA: IEEE, 1999: 1945-1950.
-
4ZHANG LH, HU S. A New Approach to Improve Particle Swarm Optimization [C]// Lecture Notes in Computer Science, Chicago 2003, USA. Berlin, Germany: Springer-Verlag, 2003: 134-139.
-
5EBERHART R, SHI Y. Comparing inertia weights and constriction factors in particle swarm optimization [C]// Proceedings of the 2000 Congress on Evolutionary Computation. California, USA: IEEE Press, 2000: 84-88.
-
6HIGASHI N, IBA H. Particle Swarm Optimization with Gaussian Mutation [C]// Proceedings of the IEEE Swarm Intelligence Symphosium 2003. Indiana, USA: IEEE Press, 2003: 72-79.
-
7Stacey A, Jancic M, Grtmdy I. Particle Swarm Optimization with Mutation [C]// Proceedings of the 2003 Congress on Evolutionary Computation. Canberra, Australia: IEEE Press, 2003: 1425-1430.
-
8LI N, QIN YQ, SUN DB, Zou T. Particle Swarm Optimization with Mutation Operator [C]// Proceedings of the Third International Conference on Machine Learning and Cybernetics, Shanghai, China, 2004. Piscataway, USA: IEEE, 2004:2251-2256.
-
9COELHO LS, KROHLING RA. Predictive Controller Tuning Using Modified Particle Swarm Optimization Based on Cauchy and Gaussian Distributions [C]// Proceedings of the 8th On-Line World Conference on Soft Computing in Industrial Applications, WSC8, Dortmund, Germany, 2005. Berlin, Germany: Springer, 2005: 287-298.
-
10RATNAWEERA A, HALGAMUGE SK, WATSON HC. Self- Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients [J]. IEEE Transaction Evolutionary Computation (S 1089-778X). 2004, 8(3): 240-255.
共引文献15
-
1林盾,李建生.粒子群优化算法在群体学习行为设计中的应用研究[J].湖南科技大学学报(自然科学版),2010,25(1):91-93. 被引量:1
-
2张聪誉,陈民铀,罗辞勇,翟进乾,姜毅.基于多目标粒子群算法的电力系统无功优化[J].电力系统保护与控制,2010,38(20):153-158. 被引量:38
-
3李文婷,吴锦.基于改进粒子群算法的神经网络建模[J].机械管理开发,2011,26(4):186-188. 被引量:2
-
4刘炜琪,刘琼,张超勇,邵新宇.基于混合粒子群算法求解多目标混流装配线排序[J].计算机集成制造系统,2011,17(12):2590-2598. 被引量:19
-
5郜振华,梅莉,祝远鉴.复合策略惯性权重的粒子群优化算法[J].计算机应用,2012,32(8):2216-2218. 被引量:18
-
6沈继红,李加莲,李焱.欧拉型光线寻优算法[J].哈尔滨工程大学学报,2012,33(7):929-934.
-
7刘东亮,徐浩军,闵桂龙.航空人-机复杂系统极值风险评估稳定性分析[J].系统工程与电子技术,2012,34(12):2504-2508. 被引量:2
-
8彭燕荣,杜昌平,王月星.基于改进PSO的导弹制导精度分配[J].计算机应用,2013,33(A02):102-104. 被引量:2
-
9热依扎.海然,山拜.达拉拜,岳石炼.基于级联随机共振与APSO算法相结合的信号检测方法[J].激光杂志,2014,35(4):11-12. 被引量:3
-
10孙宏飞,吴泽兵.一种改进型粒子群算法求解资源优化配置问题[J].兰州交通大学学报,2014,33(3):104-107.
-
1袁松贵,吴敏,彭赋,朱豆,杨珏.改进PSO算法用于电力系统无功优化的研究[J].高电压技术,2007,33(7):159-162. 被引量:24
-
2马立新,王继银,栾健,黄阳龙.三目标自适应变异微粒群算法的无功优化[J].电子科技,2016,29(4):41-44. 被引量:5
-
3江渝,黄敏,毛安,姜琪.孤立微网的多目标能量管理[J].高电压技术,2014,40(11):3519-3527. 被引量:42
-
4夏永明,付子义,袁世鹰,程志平.粒子群优化算法在直线感应电机优化设计中的应用[J].中小型电机,2002,29(6):14-16. 被引量:30
-
5杨将,江孔清.基于遗传算法的含分布式电源配电网无功优化模型研究[J].科技与生活,2010(20):85-85. 被引量:1
-
6杨秀友,田智.基于改进遗传算法的电力系统多目标无功优化研究[J].低碳世界,2014(10X):27-29.
-
7任建文,渠卫东.基于机会约束规划的孤岛模式下微电网动态经济调度[J].电力自动化设备,2016,36(3):73-78. 被引量:28
-
8邱正美,马丽,张建华.基于Tabu-PSO的含分布式发电配电网重构[J].电网与清洁能源,2010,26(10):39-41. 被引量:16
-
9王林,贺鹏,刘世辰,艾欣.包含电动汽车的热电联供微网系统经济运行优化[J].陕西电力,2016,44(3):20-24. 被引量:6
-
10王晓龙,韩富春,田亮,杨博.含风电场电力系统概率潮流计算[J].水电能源科学,2012,30(10):189-191. 被引量:2