期刊文献+

改进粒子群优化算法在实时电力调度中的研究与应用

下载PDF
导出
摘要 针对传统粒子群算法收敛精度不高、易陷入局部最优的缺点,文中提出了一种改进的粒子群优化算法,并将其用于优化实时电力调度问题。对IEEE-14节点系统的计算结果表明:与GA、PSO算法相比,新算法不仅避免了惯性因子权重调整的困难,而且较好地协调了算法的局部与全局搜索能力,从而实现经济因素、污气排放与电力调度之间的平衡。
作者 宫蓉蓉
出处 《长沙民政职业技术学院学报》 2012年第A04期178-181,共4页 Journal of Changsha Social Work College
  • 相关文献

参考文献10

  • 1J.Kennedy,R.Eberhart. Particle swarm optimization[A].Perth,Australia,1995.1942-1948.
  • 2Chao-Ming Huang,Fu-Lu Wang. An RBF Network With OLS and EPSO Algorithms for Real-Time Power Dispatch[J].IEEE Transactions on Power Systems,2007,(01).
  • 3A.J.Wood,B.F.Wollenberg. Power Generation Operation and Control[M].New York:wiley,1996.
  • 4J. S. Heo,K. Y. Lee,R. Garduno-Ramirez. Multiobjective control of power plans using particle swarm optimization technique[J].IEEE Transactions on Energy Conversion,2006,(02):552-561.
  • 5R.C.Eberhart,Y.Shi. Comparing Inertia Weights and Costric-tion Factors in Particle Swarm Optimization[A].
  • 6J. B. Park,K. S. Lee,J. R. Shin,K.Y.Lee. A particle swarm optimization for economic dispatch with nonsmooth cost functions[J].IEEE Transactions on Power Systems,2005,(01):34-42.
  • 7XIAO Hong-feng,TAN Guan-zheng. A novel particle swarm opti-mizer without velocity:Simplex-PSO[J].Journal of Central South University of Technology,2010,(17):349-356.
  • 8D. N. Jeyakumar,T. Jayabarathi,T. Raghunathan. Particle swarm optimization for various types of economic dispatch problems[J].International Journal of Electrical Power & Energy Systems,2006,(01):36-42.
  • 9陈民铀,张聪誉,罗辞勇.基于自适应进化粒子群算法的多目标优化方法[J].系统仿真学报,2009,21(22):7061-7065. 被引量:9
  • 10秦洪德,石丽丽.一种新型的被动启发式粒子群优化算法[J].哈尔滨工程大学学报,2010,31(10):1298-1302. 被引量:8

二级参考文献32

  • 1COELLO CA, PULIDO GT, LECHUGA MS. Handling Multiple Objectives with Particle Swarm Optimization [J]. IEEE Transaction Evolutionary Computation (S1089-778X), 2004, 8(3): 256-279.
  • 2SHI YH, EBERHART R. A Modified Particle Swarm Optimize [C]// Proc IEEE World Congress on Computation Intelligence, Piscataway, NJ, USA, 1998. USA, IEEE, 1998: 69-73.
  • 3SHI Y, EBERHART R. Empirical Study of Particle Swarm Optimization [C]// Proceedings of the 1999 congress on Evolutionary Computation. Piscataway, USA: IEEE, 1999: 1945-1950.
  • 4ZHANG LH, HU S. A New Approach to Improve Particle Swarm Optimization [C]// Lecture Notes in Computer Science, Chicago 2003, USA. Berlin, Germany: Springer-Verlag, 2003: 134-139.
  • 5EBERHART R, SHI Y. Comparing inertia weights and constriction factors in particle swarm optimization [C]// Proceedings of the 2000 Congress on Evolutionary Computation. California, USA: IEEE Press, 2000: 84-88.
  • 6HIGASHI N, IBA H. Particle Swarm Optimization with Gaussian Mutation [C]// Proceedings of the IEEE Swarm Intelligence Symphosium 2003. Indiana, USA: IEEE Press, 2003: 72-79.
  • 7Stacey A, Jancic M, Grtmdy I. Particle Swarm Optimization with Mutation [C]// Proceedings of the 2003 Congress on Evolutionary Computation. Canberra, Australia: IEEE Press, 2003: 1425-1430.
  • 8LI N, QIN YQ, SUN DB, Zou T. Particle Swarm Optimization with Mutation Operator [C]// Proceedings of the Third International Conference on Machine Learning and Cybernetics, Shanghai, China, 2004. Piscataway, USA: IEEE, 2004:2251-2256.
  • 9COELHO LS, KROHLING RA. Predictive Controller Tuning Using Modified Particle Swarm Optimization Based on Cauchy and Gaussian Distributions [C]// Proceedings of the 8th On-Line World Conference on Soft Computing in Industrial Applications, WSC8, Dortmund, Germany, 2005. Berlin, Germany: Springer, 2005: 287-298.
  • 10RATNAWEERA A, HALGAMUGE SK, WATSON HC. Self- Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients [J]. IEEE Transaction Evolutionary Computation (S 1089-778X). 2004, 8(3): 240-255.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部